# Cell from fastai.vision.all import * import gradio as gr # Cell learn = load_learner('/kaggle/input/kitchen-detector-model/model.pkl') # Cell categories = ('kitchen', 'not_kitchen') def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) # Cell image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ['/kaggle/input/kitchen-data-set/kitchen-data-set/kitchen/209154559.jpeg', '/kaggle/input/kitchen-data-set/kitchen-data-set/not_kitchen/209154922.jpeg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)