Spaces:
Runtime error
Runtime error
File size: 5,975 Bytes
256a58e 5f988b9 144548a 5f988b9 0ddfda6 c61139e b2f7791 4c37ba1 ecfe0fd 01e6b5b 0ddfda6 f67dc62 0ddfda6 c61139e 0ddfda6 256a58e dc25be5 a05b9a7 dc25be5 01e6b5b 1435787 256a58e ec84363 5f988b9 ec84363 256a58e 5f988b9 ec84363 5f988b9 256a58e 5f988b9 256a58e 5f988b9 cc6ed45 5f988b9 cc6ed45 5f988b9 cc6ed45 dc25be5 256a58e 5f988b9 b4760ab b758449 5f988b9 cc6ed45 5f988b9 256a58e 4c37ba1 0ddfda6 256a58e 01e6b5b a05b9a7 256a58e cc6ed45 256a58e cc6ed45 01e6b5b 9b90dad 256a58e 697a6d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
import os
import numpy as np
import pandas as pd
from IPython import display
import faiss
import torch
from transformers import CLIPTokenizer, CLIPTextModelWithProjection
HTML="""
<!DOCTYPE html>
<html>
<style>
.container {
align-items: center;
justify-content: center;
}
img {
max-width: 10%;
max-height:10%;
float: left;
}
.text {
font-size: 32px;
padding-top: 15%;
padding-left: 15%;
padding-bottom: 5%;
float: left
}
</style>
<body>
<div class="container">
<div class="image">
<img src="https://huggingface.co/spaces/Searchium-ai/Video-Search/resolve/main/Searchium.png" width="333" height="216">
</div>
<div class="text">
<h1 style="font-size: 32px;"> Large Scale Video Search </h1>
</div>
</div>
</body>
</html>
"""
DESCRIPTION="""Welcome to our video retrieval demo powered by [Searchium-ai/clip4clip-webvid150k](https://huggingface.co/Searchium-ai/clip4clip-webvid150k)! <br>
Using free text search - you will find the top 5 most relevant clips among a dataset of 5.5 million video clips. <br>
Discover, explore, and enjoy the world of video search at your fingertips.
"""
ENDING = """For search acceleration capabilities, please refer to [Searchium.ai](https://www.searchium.ai)
"""
DATA_PATH = './new_data'
ft_visual_features_file = DATA_PATH + '/video_dataset_visual_features_database.npy'
#load database features:
ft_visual_features_database = np.load(ft_visual_features_file)
database_csv_path = os.path.join(DATA_PATH, 'video_dataset.csv')
database_df = pd.read_csv(database_csv_path)
class NearestNeighbors:
"""
Class for NearestNeighbors.
"""
def __init__(self, n_neighbors=10, metric='cosine', rerank_from=-1):
"""
metric = 'cosine' / 'binary'
if metric ~= 'cosine' and rerank_from > n_neighbors then a cosine rerank will be performed
"""
self.n_neighbors = n_neighbors
self.metric = metric
self.rerank_from = rerank_from
def normalize(self, a):
return a / np.sum(a**2, axis=1, keepdims=True)
def fit(self, data, o_data=None):
if self.metric == 'cosine':
data = self.normalize(data)
self.index = faiss.IndexFlatIP(data.shape[1])
elif self.metric == 'binary':
self.o_data = data if o_data is None else o_data
#assuming data already packed
self.index = faiss.IndexBinaryFlat(data.shape[1]*8)
self.index.add(np.ascontiguousarray(data))
def kneighbors(self, q_data):
if self.metric == 'cosine':
q_data = self.normalize(q_data)
sim, idx = self.index.search(q_data, self.n_neighbors)
else:
if self.metric == 'binary':
print('This is binary search.')
bq_data = np.packbits((q_data > 0.0).astype(bool), axis=1)
sim, idx = self.index.search(bq_data, max(self.rerank_from, self.n_neighbors))
if self.rerank_from > self.n_neighbors:
re_sims = np.zeros([len(q_data), self.n_neighbors], dtype=float)
re_idxs = np.zeros([len(q_data), self.n_neighbors], dtype=float)
for i, q in enumerate(q_data):
rerank_data = self.o_data[idx[i]]
rerank_search = NearestNeighbors(n_neighbors=self.n_neighbors, metric='cosine')
rerank_search.fit(rerank_data)
re_sim, re_idx = rerank_search.kneighbors(np.asarray([q]))
re_sims[i, :] = re_sim
re_idxs[i, :] = idx[i][re_idx]
idx = re_idxs
sim = re_sims
return sim, idx
model = CLIPTextModelWithProjection.from_pretrained("Searchium-ai/clip4clip-webvid150k")
tokenizer = CLIPTokenizer.from_pretrained("Searchium-ai/clip4clip-webvid150k")
def search(search_sentence):
inputs = tokenizer(text=search_sentence , return_tensors="pt")
outputs = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
# Normalizing the embeddings:
final_output = outputs[0] / outputs[0].norm(dim=-1, keepdim=True)
sequence_output = final_output.cpu().detach().numpy()
nn_search = NearestNeighbors(n_neighbors=5, metric='binary', rerank_from=100)
nn_search.fit(np.packbits((ft_visual_features_database > 0.0).astype(bool), axis=1), o_data=ft_visual_features_database)
sims, idxs = nn_search.kneighbors(sequence_output)
# print(database_df.iloc[idxs[0]]['contentUrl'])
urls = database_df.iloc[idxs[0]]['contentUrl'].to_list()
AUTOPLAY_VIDEOS = []
for url in urls:
AUTOPLAY_VIDEOS.append("""<video controls muted autoplay>
<source src={} type="video/mp4">
</video>""".format(url))
return AUTOPLAY_VIDEOS
with gr.Blocks(theme=gr.themes.Default(spacing_size=gr.themes.sizes.spacing_lg, radius_size=gr.themes.sizes.radius_lg, text_size=gr.themes.sizes.text_lg)) as demo:
gr.HTML(HTML)
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
inp = gr.Textbox(placeholder="Write a sentence.")
btn = gr.Button(value="Search")
ex = [["natural wonders of the world"],["birds fly in the sky"],["yoga routines for morning energy"],["baking chocolate cake"]]
gr.Examples(examples=ex,
inputs=[inp]
)
with gr.Column():
out = [gr.HTML() for _ in range(5)]
btn.click(search, inputs=inp, outputs=out)
gr.Markdown(ENDING)
demo.launch() |