File size: 5,798 Bytes
256a58e
5f988b9
 
 
 
 
 
144548a
5f988b9
0ddfda6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1dbdfa
0ddfda6
ecfe0fd
0ddfda6
 
 
 
 
 
 
 
 
c1dbdfa
0ddfda6
 
 
 
 
256a58e
 
1435787
256a58e
941a695
5f988b9
941a695
256a58e
 
5f988b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256a58e
5f988b9
 
 
 
 
 
 
 
256a58e
5f988b9
 
 
cc6ed45
 
5f988b9
 
 
cc6ed45
 
 
 
 
 
 
 
 
 
 
 
5f988b9
 
cc6ed45
256a58e
cc6ed45
256a58e
5f988b9
 
 
cc6ed45
256a58e
5f988b9
 
 
256a58e
5f988b9
 
 
 
 
 
cc6ed45
 
 
 
 
 
 
 
 
5f988b9
256a58e
 
0ddfda6
256a58e
 
 
 
 
 
cc6ed45
 
256a58e
cc6ed45
 
256a58e
cc6ed45
256a58e
 
697a6d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import gradio as gr
import os
import numpy as np
import pandas as pd
from IPython import display
import faiss
import torch
from transformers import CLIPTokenizer, CLIPTextModelWithProjection

HTML="""
<!DOCTYPE html>
<html>
    <style>
    .container {
        align-items: center;
        justify-content: center;
    }
    
    img {
        max-width: 10%;
        max-height:10%;
        float: left;
    }
    
    .text {
        font-size: 20px;
        padding-top: 10%;
        padding-left: 20px;
        padding-bottom: 5%;
        float: left;
    }
    </style>
    <body>
        <div class="container">
            <div class="image">
                <img src="https://huggingface.co/spaces/Diangle/Clip4Clip-webvid/resolve/main/Searchium.png" width="333" height="216">
            </div>
            <div class="text">
                <h1 style="font-size: 64px;"> Video Retrieval </h1>
            </div>
        </div>
    </body>
</html>
"""

DESCRIPTION="""This is a video retrieval demo using [Diangle/clip4clip-webvid](https://huggingface.co/Diangle/clip4clip-webvid)."""


DATA_PATH = './data'

ft_visual_features_file = DATA_PATH + '/dataset_v1_visual_features_database.npy'

#load database features:
ft_visual_features_database = np.load(ft_visual_features_file)

database_csv_path = os.path.join(DATA_PATH, 'dataset_v1.csv')
database_df = pd.read_csv(database_csv_path)

class NearestNeighbors:
    """
    Class for NearestNeighbors.   
    """
    def __init__(self, n_neighbors=10, metric='cosine', rerank_from=-1):
        """
         metric = 'cosine' / 'binary' 
         if metric ~= 'cosine' and rerank_from > n_neighbors then a cosine rerank will be performed
        """
        self.n_neighbors = n_neighbors
        self.metric = metric        
        self.rerank_from = rerank_from                
        
    def normalize(self, a):
        return a / np.sum(a**2, axis=1, keepdims=True)
    
    def fit(self, data, o_data=None):
        if self.metric == 'cosine':
            data = self.normalize(data)
            self.index = faiss.IndexFlatIP(data.shape[1])     
        elif self.metric == 'binary':
            self.o_data = data if o_data is None else o_data
            #assuming data already packed
            self.index = faiss.IndexBinaryFlat(data.shape[1]*8)            
        self.index.add(np.ascontiguousarray(data))
        
    def kneighbors(self, q_data):                
        if self.metric == 'cosine':
            q_data = self.normalize(q_data)      
            sim, idx = self.index.search(q_data, self.n_neighbors)        
        else:            
            if self.metric == 'binary':
                print('This is binary search.')
                bq_data = np.packbits((q_data > 0.0).astype(bool), axis=1)
            sim, idx = self.index.search(bq_data, max(self.rerank_from, self.n_neighbors))
            
            if self.rerank_from > self.n_neighbors:
                re_sims = np.zeros([len(q_data), self.n_neighbors], dtype=float)
                re_idxs = np.zeros([len(q_data), self.n_neighbors], dtype=float)
                for i, q in enumerate(q_data):
                    rerank_data = self.o_data[idx[i]]
                    rerank_search = NearestNeighbors(n_neighbors=self.n_neighbors, metric='cosine') 
                    rerank_search.fit(rerank_data)
                    re_sim, re_idx = rerank_search.kneighbors(np.asarray([q]))
                    re_sims[i, :] = re_sim
                    re_idxs[i, :] = idx[i][re_idx]
                idx = re_idxs
                sim = re_sims

        return sim, idx
    
                    
model = CLIPTextModelWithProjection.from_pretrained("Diangle/clip4clip-webvid")
tokenizer = CLIPTokenizer.from_pretrained("Diangle/clip4clip-webvid")
    
def search(search_sentence):
    inputs = tokenizer(text=search_sentence , return_tensors="pt", padding=True)

    outputs = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], return_dict=False)  
    text_projection = model.state_dict()['text_projection.weight']
    text_embeds = outputs[1] @ text_projection
    final_output = text_embeds[torch.arange(text_embeds.shape[0]), inputs["input_ids"].argmax(dim=-1)]

    # Normalization
    final_output = final_output / final_output.norm(dim=-1, keepdim=True)
    final_output = final_output.cpu().detach().numpy()
    sequence_output = final_output / np.sum(final_output**2, axis=1, keepdims=True)
    
    nn_search = NearestNeighbors(n_neighbors=5, metric='binary', rerank_from=100)
    nn_search.fit(np.packbits((ft_visual_features_database > 0.0).astype(bool), axis=1), o_data=ft_visual_features_database)
    sims, idxs = nn_search.kneighbors(sequence_output)
    # print(database_df.iloc[idxs[0]]['contentUrl'])
    urls = database_df.iloc[idxs[0]]['contentUrl'].to_list()
    AUTOPLAY_VIDEOS = []
    for url in urls:
        AUTOPLAY_VIDEOS.append("""<video controls muted autoplay>
                    <source src={} type="video/mp4">
                    </video>""".format(url))
    return AUTOPLAY_VIDEOS


with gr.Blocks() as demo:
    gr.HTML(HTML)
    gr.Markdown(DESCRIPTION)
    gr.Markdown("Retrieval of top 5 videos relevant to the input sentence: ")
    with gr.Row():
        with gr.Column():
            inp = gr.Textbox(placeholder="Write a sentence.")
            btn = gr.Button(value="Retrieve")
            ex = [["mind-blowing magic tricks"],["baking chocolate cake"], 
                ["birds fly in the sky"], ["natural wonders of the world"]]
            gr.Examples(examples=ex,
                        inputs=[inp]
                        )
        with gr.Column():
            out = [gr.HTML() for _ in range(5)]
        btn.click(search, inputs=inp, outputs=out)
        
demo.launch()