import gradio as gr import os import numpy as np import pandas as pd from IPython import display import faiss import torch from transformers import CLIPTokenizer, CLIPTextModelWithProjection HTML="""

Video Retrieval

""" DESCRIPTION="""This is a video retrieval demo using [Diangle/clip4clip-webvid](https://huggingface.co/Diangle/clip4clip-webvid).""" DATA_PATH = './data' ft_visual_features_file = DATA_PATH + '/dataset_v1_visual_features_database.npy' #load database features: ft_visual_features_database = np.load(ft_visual_features_file) database_csv_path = os.path.join(DATA_PATH, 'dataset_v1.csv') database_df = pd.read_csv(database_csv_path) class NearestNeighbors: """ Class for NearestNeighbors. """ def __init__(self, n_neighbors=10, metric='cosine', rerank_from=-1): """ metric = 'cosine' / 'binary' if metric ~= 'cosine' and rerank_from > n_neighbors then a cosine rerank will be performed """ self.n_neighbors = n_neighbors self.metric = metric self.rerank_from = rerank_from def normalize(self, a): return a / np.sum(a**2, axis=1, keepdims=True) def fit(self, data, o_data=None): if self.metric == 'cosine': data = self.normalize(data) self.index = faiss.IndexFlatIP(data.shape[1]) elif self.metric == 'binary': self.o_data = data if o_data is None else o_data #assuming data already packed self.index = faiss.IndexBinaryFlat(data.shape[1]*8) self.index.add(np.ascontiguousarray(data)) def kneighbors(self, q_data): if self.metric == 'cosine': q_data = self.normalize(q_data) sim, idx = self.index.search(q_data, self.n_neighbors) else: if self.metric == 'binary': print('This is binary search.') bq_data = np.packbits((q_data > 0.0).astype(bool), axis=1) sim, idx = self.index.search(bq_data, max(self.rerank_from, self.n_neighbors)) if self.rerank_from > self.n_neighbors: re_sims = np.zeros([len(q_data), self.n_neighbors], dtype=float) re_idxs = np.zeros([len(q_data), self.n_neighbors], dtype=float) for i, q in enumerate(q_data): rerank_data = self.o_data[idx[i]] rerank_search = NearestNeighbors(n_neighbors=self.n_neighbors, metric='cosine') rerank_search.fit(rerank_data) re_sim, re_idx = rerank_search.kneighbors(np.asarray([q])) re_sims[i, :] = re_sim re_idxs[i, :] = idx[i][re_idx] idx = re_idxs sim = re_sims return sim, idx model = CLIPTextModelWithProjection.from_pretrained("Diangle/clip4clip-webvid") tokenizer = CLIPTokenizer.from_pretrained("Diangle/clip4clip-webvid") def search(search_sentence): inputs = tokenizer(text=search_sentence , return_tensors="pt", padding=True) outputs = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], return_dict=False) text_projection = model.state_dict()['text_projection.weight'] text_embeds = outputs[1] @ text_projection final_output = text_embeds[torch.arange(text_embeds.shape[0]), inputs["input_ids"].argmax(dim=-1)] # Normalization final_output = final_output / final_output.norm(dim=-1, keepdim=True) final_output = final_output.cpu().detach().numpy() sequence_output = final_output / np.sum(final_output**2, axis=1, keepdims=True) nn_search = NearestNeighbors(n_neighbors=5, metric='binary', rerank_from=100) nn_search.fit(np.packbits((ft_visual_features_database > 0.0).astype(bool), axis=1), o_data=ft_visual_features_database) sims, idxs = nn_search.kneighbors(sequence_output) # print(database_df.iloc[idxs[0]]['contentUrl']) urls = database_df.iloc[idxs[0]]['contentUrl'].to_list() AUTOPLAY_VIDEOS = [] for url in urls: AUTOPLAY_VIDEOS.append("""""".format(url)) return AUTOPLAY_VIDEOS with gr.Blocks() as demo: gr.HTML(HTML) gr.Markdown(DESCRIPTION) gr.Markdown("Retrieval of top 5 videos relevant to the input sentence: ") with gr.Row(): with gr.Column(): inp = gr.Textbox(placeholder="Write a sentence.") btn = gr.Button(value="Retrieve") ex = [["mind-blowing magic tricks"],["baking chocolate cake"], ["birds fly in the sky"], ["natural wonders of the world"]] gr.Examples(examples=ex, inputs=[inp] ) with gr.Column(): out = [gr.HTML() for _ in range(5)] btn.click(search, inputs=inp, outputs=out) demo.launch()