# -*- coding: utf-8 -*- """ Created on Tue Apr 26 21:02:31 2022 @author: pc """ import pickle import numpy as np import torch import gradio as gr import sys import subprocess import os from typing import Tuple import PIL.Image os.system("git clone https://github.com/NVlabs/stylegan3") sys.path.append("stylegan3") DESCRIPTION = f'''This model generates healthy MR Brain Images. ![Example](ex.png) ''' def make_transform(translate: Tuple[float,float], angle: float): m = np.eye(3) s = np.sin(angle/360.0*np.pi*2) c = np.cos(angle/360.0*np.pi*2) m[0][0] = c m[0][1] = s m[0][2] = translate[0] m[1][0] = -s m[1][1] = c m[1][2] = translate[1] return m network_pkl='braingan-400.pkl' with open(network_pkl, 'rb') as f: G = pickle.load(f)['G_ema'] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") G.eval() G.to(device) def predict(Seed,noise_mode,truncation_psi,trans_x,trans_y,angle): # Generate images. z = torch.from_numpy(np.random.RandomState(Seed).randn(1, G.z_dim)).to(device) label = torch.zeros([1, G.c_dim], device=device) # Construct an inverse rotation/translation matrix and pass to the generator. The # generator expects this matrix as an inverse to avoid potentially failing numerical # operations in the network. if hasattr(G.synthesis, 'input'): m = make_transform((trans_x,trans_y), angle) m = np.linalg.inv(m) G.synthesis.input.transform.copy_(torch.from_numpy(m)) img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode) img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) return (PIL.Image.fromarray(img[0].cpu().numpy()[:,:,0])).resize((512,512)) noises=['const', 'random', 'none'] interface=gr.Interface(fn=predict, title="Brain MR Image Generation with StyleGAN-2", description = DESCRIPTION, article = "Author: S.Serdar Helli", inputs=[gr.inputs.Slider( minimum=0, maximum=2**12,label='Seed'),gr.inputs.Radio( choices=noises, default='const',label='Noise Mods'), gr.inputs.Slider(0, 2, step=0.05, default=1, label='Truncation psi'), gr.inputs.Slider(-1, 1, step=0.05, default=0, label='Translate X'), gr.inputs.Slider(-1, 1, step=0.05, default=0, label='Translate Y'), gr.inputs.Slider(-180, 180, step=5, default=0, label='Angle'),], outputs=gr.outputs.Image( type="numpy", label="Output")) interface.launch(debug=True)