|
|
|
"""
|
|
@author: serdarhelli
|
|
"""
|
|
|
|
|
|
import numpy as np
|
|
import math
|
|
import cv2
|
|
import pydicom
|
|
from pydicom.pixel_data_handlers.util import apply_voi_lut
|
|
|
|
|
|
|
|
def find_center(img):
|
|
thresh=(img)*(255/np.max(img))
|
|
thresh = thresh.astype(np.uint8)
|
|
kernel =( np.ones((5,5), dtype=np.float32))
|
|
ret,thresh = cv2.threshold(thresh, 0, 255, cv2.THRESH_BINARY)
|
|
thresh=cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel,iterations=1 )
|
|
thresh=cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel,iterations=1 )
|
|
thresh=cv2.erode(thresh,kernel,iterations =1)
|
|
contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
|
|
if len(contours)!=0:
|
|
c_area=np.zeros([len(contours)])
|
|
for i in range(len(contours)):
|
|
c_area[i]= cv2.contourArea(contours[i])
|
|
c_1=contours[np.argmax(c_area)]
|
|
M = cv2.moments(c_1)
|
|
cX = int(M["m10"] / M["m00"])
|
|
cY = int(M["m01"] / M["m00"])
|
|
return cX,cY
|
|
else:
|
|
return 0,0
|
|
|
|
def points_center_mass(predict):
|
|
points=np.zeros([6,2])
|
|
for i in range(6):
|
|
points[i,:]=find_center(predict[0,:,:,i])
|
|
return np.int32(points)
|
|
|
|
|
|
def points_max_value(predict):
|
|
points=np.zeros([6,2])
|
|
for i in range(6):
|
|
pre=predict[0,:,:,i]
|
|
points[i,:]=np.where(pre == pre.max())
|
|
return np.fliplr(np.int32(points))
|
|
|
|
|
|
def read_dicom(path, voi_lut = True, fix_monochrome = True):
|
|
dicom = pydicom.read_file(path)
|
|
|
|
if voi_lut:
|
|
data = apply_voi_lut(dicom.pixel_array, dicom)
|
|
else:
|
|
data = dicom.pixel_array
|
|
|
|
|
|
if fix_monochrome and dicom.PhotometricInterpretation == "MONOCHROME1":
|
|
data = np.amax(data) - data
|
|
|
|
|
|
try:
|
|
PatientName=str(dicom.PatientName.components[0])
|
|
except:
|
|
PatientName="Empty"
|
|
pass
|
|
|
|
try:
|
|
PatientID=str(dicom.PatientID)
|
|
except:
|
|
PatientID="Empty"
|
|
pass
|
|
|
|
try:
|
|
SOPInstanceUID=str(dicom.SOPInstanceUID.name)
|
|
except:
|
|
SOPInstanceUID="Empty"
|
|
pass
|
|
|
|
try:
|
|
StudyDate=str(dicom.StudyDate)
|
|
except:
|
|
StudyDate="Empty"
|
|
pass
|
|
|
|
try:
|
|
InstitutionAddress=str(dicom.InstitutionName)
|
|
except:
|
|
InstitutionAddress="Empty"
|
|
pass
|
|
|
|
try:
|
|
PatientAge=str(dicom.PatientAge)
|
|
except:
|
|
PatientAge="Empty"
|
|
pass
|
|
|
|
try:
|
|
PatientSex=str(dicom.PatientSex)
|
|
except:
|
|
PatientSex="Empty"
|
|
pass
|
|
|
|
|
|
return data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex
|
|
|
|
|
|
|
|
def modification_cropping(roi):
|
|
if roi.shape[0]!=roi.shape[1]:
|
|
if roi.shape[0]>roi.shape[1]:
|
|
img2=np.zeros([roi.shape[0],roi.shape[0]])
|
|
add=(roi.shape[0]-roi.shape[1])
|
|
a1=add//2
|
|
a2=add-a1
|
|
img2[:,a1:(roi.shape[0]-a2)]=roi
|
|
|
|
if roi.shape[1]>roi.shape[0]:
|
|
img2=np.zeros([roi.shape[1],roi.shape[1]])
|
|
add=(roi.shape[1]-roi.shape[0])
|
|
a1=add//2
|
|
a2=add-a1
|
|
img2[a1:(roi.shape[1]-a2),:]=roi
|
|
else:
|
|
img2=roi
|
|
return img2
|
|
|
|
|
|
def croping(img,x, y, w, h):
|
|
if y<0:
|
|
y=0
|
|
if abs(w)<abs(h):
|
|
z=np.abs(h-w)
|
|
if img.shape[1]<x+w+(z//2):
|
|
if x-(z//2)>0:
|
|
img2=img[y:y+h, x-(z//2):img.shape[1]].copy()
|
|
else:
|
|
img2=img[y:y+h, 0:img.shape[1]].copy()
|
|
else:
|
|
if x-(z//2)>0:
|
|
img2=img[y:y+h, x-(z//2):x+w+(z//2)].copy()
|
|
else:
|
|
img2=img[y:y+h, 0:x+w+(z//2)].copy()
|
|
if abs(h)<abs(w):
|
|
z=np.abs(h-w)
|
|
if img.shape[0]<y+h+(z//2):
|
|
if y-(z//2)>0:
|
|
img2=img[y-(z//2):img.shape[0], x:x+w].copy()
|
|
else:
|
|
img2=img[0:img.shape[0], x:x+w].copy()
|
|
else:
|
|
if y-(z//2)>0:
|
|
img2=img[y-(z//2):y+h+(z//2), x:x+w].copy()
|
|
else:
|
|
img2=img[0:y+h+(z//2), x:x+w].copy()
|
|
if abs(h)==abs(w):
|
|
img2=img[y:y + h, x:x + w].copy()
|
|
return img2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def crop_resize(path):
|
|
try:
|
|
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(path,False,True)
|
|
except:
|
|
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(path,True,True)
|
|
pass
|
|
img = np.copy(data)
|
|
|
|
|
|
kernel =( np.ones((5,5), dtype=np.float32))
|
|
img2=cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel,iterations=2 )
|
|
img2=cv2.erode(img2,kernel,iterations =2)
|
|
if len(img2.shape)==3:
|
|
img2=img2[:,:,0]
|
|
|
|
|
|
ret,thresh = cv2.threshold(img2,100, 4096, cv2.THRESH_BINARY)
|
|
|
|
|
|
thresh =((thresh/np.max(thresh))*255).astype('uint8')
|
|
a1,b1=thresh.shape
|
|
|
|
contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
if len(contours)==0:
|
|
return thresh,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex
|
|
|
|
|
|
c_area=np.zeros([len(contours)])
|
|
for i in range(len(contours)):
|
|
c_area[i]= cv2.contourArea(contours[i])
|
|
|
|
|
|
cnts=contours[np.argmax(c_area)]
|
|
x, y, w, h = cv2.boundingRect(cnts)
|
|
|
|
|
|
roi = croping(data, x, y, w, h)
|
|
|
|
|
|
roi=modification_cropping(roi)
|
|
|
|
|
|
roi=cv2.resize(roi,(256,256),interpolation=cv2.INTER_NEAREST)
|
|
|
|
return roi,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex
|
|
|
|
def put_text_point(original_img,heatpoint):
|
|
original_img =((original_img/np.max(original_img))*255).astype('uint8')
|
|
color = (0, 51, 204)
|
|
img = cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB)
|
|
for i in range(6):
|
|
if heatpoint[i,0]<=0 and heatpoint[i,1]<=0:
|
|
print("L"+str(i)+" There is no Point")
|
|
else :
|
|
if i>2:
|
|
coordx=0
|
|
coordy=-(i*3)
|
|
else:
|
|
coordx=-(i*3)
|
|
coordy=+(i*3)+10
|
|
img=cv2.putText(img, "L"+str(i),(heatpoint[i,0]+coordx,heatpoint[i,1]+coordy), cv2.FONT_HERSHEY_SIMPLEX,0.35, color, 1)
|
|
img = cv2.circle(img, (heatpoint[i,0],heatpoint[i,1]), radius=2, color=color, thickness=-1)
|
|
return img
|
|
|
|
def get_vector(pt1,pt2):
|
|
vec=np.zeros([2])
|
|
vec[1]=(pt2[1]-pt1[1])
|
|
vec[0]=(pt2[0]-pt1[0])
|
|
return vec
|
|
|
|
def dotproduct(v1, v2):
|
|
return sum((a*b) for a, b in zip(v1, v2))
|
|
|
|
def length(v):
|
|
return math.sqrt(dotproduct(v, v))
|
|
|
|
def getAngle(v1, v2):
|
|
if length(v1)==0 or length(v2)==0:
|
|
return "Failed"
|
|
return math.degrees(math.acos(dotproduct(v1, v2) / (length(v1) * length(v2))))
|
|
|
|
def bisector_vector(v1,v2):
|
|
if length(v1)==0 or length(v2) ==0:
|
|
return [0,0]
|
|
v1=v1/(length(v1))
|
|
v2=v2/(length(v2))
|
|
v3=(v1+v2)
|
|
return v3
|
|
|
|
|
|
|
|
def angle_patellercongruence(heatpoint,magnitude=50):
|
|
v1=get_vector(heatpoint[1,:],heatpoint[2,:])
|
|
v2=get_vector(heatpoint[1,:],heatpoint[0,:])
|
|
v3=get_vector(heatpoint[1,:],heatpoint[3,:])
|
|
v4=bisector_vector(v1,v2)
|
|
v=np.int32(v4*magnitude)
|
|
coord=v+heatpoint[1,:]
|
|
if length(v3)==0:
|
|
return "Failed",[0,0]
|
|
angle_patellercongruence=getAngle(v3/(length(v3)),v4)
|
|
return angle_patellercongruence,coord
|
|
|
|
def angle_paraleltilt_displacement(heatpoint):
|
|
v1=get_vector(heatpoint[4,:],heatpoint[5,:])
|
|
v2=get_vector(heatpoint[0,:],heatpoint[2,:])
|
|
angle_paraleltilt=getAngle(v1,v2)
|
|
return angle_paraleltilt
|
|
|
|
|
|
def draw_angle(img,heatpoint):
|
|
color = (255, 26, 26)
|
|
color2=(255, 255, 0)
|
|
color3=(51, 255, 51)
|
|
if np.min(heatpoint[0:3,:])<=0:
|
|
patellercongruence,angle_paraleltilt="Failed"
|
|
return img
|
|
if np.min(heatpoint[3:,:])<=0:
|
|
angle_paraleltilt="Failed"
|
|
v1=get_vector(heatpoint[1,:],heatpoint[2,:])
|
|
v2=get_vector(heatpoint[1,:],heatpoint[0,:])
|
|
angle=getAngle(v1,v2)
|
|
patellercongruence,coord=angle_patellercongruence(heatpoint)
|
|
angle_paraleltilt=angle_paraleltilt_displacement(heatpoint)
|
|
img=cv2.line(img,tuple( (heatpoint[1,:])), tuple((heatpoint[2,:])), color, thickness=1, lineType=8)
|
|
img=cv2.line(img, tuple((heatpoint[1,:])), tuple((heatpoint[0,:])), color, thickness=1, lineType=8)
|
|
img=cv2.line(img, tuple((heatpoint[1,:])), tuple((heatpoint[3,:])), color2, thickness=1, lineType=8)
|
|
img=cv2.line(img, tuple((heatpoint[4,:])), tuple((heatpoint[5,:])), color3, thickness=1, lineType=8)
|
|
img=cv2.line(img, tuple((heatpoint[0,:])), tuple((heatpoint[2,:])), color3, thickness=1, lineType=8)
|
|
img=cv2.line(img,tuple( (heatpoint[1,:])), tuple(coord), color2, thickness=1, lineType=8)
|
|
img=cv2.putText(img,"Pateller Congruence Angle :"+str(round(patellercongruence,2)),(25,25), cv2.FONT_HERSHEY_SIMPLEX,0.35, color2, 1)
|
|
img=cv2.putText(img,"Paralel Tilt Angle :"+str(round(angle_paraleltilt,2)),(50,50), cv2.FONT_HERSHEY_SIMPLEX,0.35, color3, 1)
|
|
img=cv2.putText(img, "Angle :"+str(round(angle,2)),(heatpoint[1,0]+10,heatpoint[1,1]+15), cv2.FONT_HERSHEY_SIMPLEX,0.35, color,1)
|
|
return img,patellercongruence,angle_paraleltilt
|
|
|
|
def predict(img,model):
|
|
|
|
img=np.float32(img/(np.max(img)))
|
|
img=np.reshape(img,(1,256,256,1))
|
|
predictions=model.predict(img)
|
|
|
|
pre=predictions[-1]
|
|
return pre
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|