SerdarHelli's picture
Upload Utils.py
9d49616
raw
history blame
10.4 kB
# -*- coding: utf-8 -*-
"""
@author: serdarhelli
"""
import numpy as np
import math
import cv2
import pydicom
from pydicom.pixel_data_handlers.util import apply_voi_lut
def find_center(img):
thresh=(img)*(255/np.max(img))
thresh = thresh.astype(np.uint8)
kernel =( np.ones((5,5), dtype=np.float32))
ret,thresh = cv2.threshold(thresh, 0, 255, cv2.THRESH_BINARY)
thresh=cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel,iterations=1 )
thresh=cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel,iterations=1 )
thresh=cv2.erode(thresh,kernel,iterations =1)
contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
if len(contours)!=0:
c_area=np.zeros([len(contours)])
for i in range(len(contours)):
c_area[i]= cv2.contourArea(contours[i])
c_1=contours[np.argmax(c_area)]
M = cv2.moments(c_1)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
return cX,cY
else:
return 0,0
def points_center_mass(predict):
points=np.zeros([6,2])
for i in range(6):
points[i,:]=find_center(predict[0,:,:,i])
return np.int32(points)
def points_max_value(predict):
points=np.zeros([6,2])
for i in range(6):
pre=predict[0,:,:,i]
points[i,:]=np.where(pre == pre.max())
return np.fliplr(np.int32(points))
def read_dicom(path, voi_lut = True, fix_monochrome = True):
dicom = pydicom.read_file(path)
# VOI LUT (if available by DICOM device) is used to transform raw DICOM data to "human-friendly" view
if voi_lut:
data = apply_voi_lut(dicom.pixel_array, dicom)
else:
data = dicom.pixel_array
# depending on this value, X-ray may look inverted - fix that:
if fix_monochrome and dicom.PhotometricInterpretation == "MONOCHROME1":
data = np.amax(data) - data
# data=data*255
# data = np.uint8(data)
try:
PatientName=str(dicom.PatientName.components[0])
except:
PatientName="Empty"
pass
try:
PatientID=str(dicom.PatientID)
except:
PatientID="Empty"
pass
try:
SOPInstanceUID=str(dicom.SOPInstanceUID.name)
except:
SOPInstanceUID="Empty"
pass
try:
StudyDate=str(dicom.StudyDate)
except:
StudyDate="Empty"
pass
try:
InstitutionAddress=str(dicom.InstitutionName)
except:
InstitutionAddress="Empty"
pass
try:
PatientAge=str(dicom.PatientAge)
except:
PatientAge="Empty"
pass
try:
PatientSex=str(dicom.PatientSex)
except:
PatientSex="Empty"
pass
#data -> np.uint16
return data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex
def modification_cropping(roi):
if roi.shape[0]!=roi.shape[1]:
if roi.shape[0]>roi.shape[1]:
img2=np.zeros([roi.shape[0],roi.shape[0]])
add=(roi.shape[0]-roi.shape[1])
a1=add//2
a2=add-a1
img2[:,a1:(roi.shape[0]-a2)]=roi
if roi.shape[1]>roi.shape[0]:
img2=np.zeros([roi.shape[1],roi.shape[1]])
add=(roi.shape[1]-roi.shape[0])
a1=add//2
a2=add-a1
img2[a1:(roi.shape[1]-a2),:]=roi
else:
img2=roi
return img2
def croping(img,x, y, w, h):
if y<0:
y=0
if abs(w)<abs(h):
z=np.abs(h-w)
if img.shape[1]<x+w+(z//2):
if x-(z//2)>0:
img2=img[y:y+h, x-(z//2):img.shape[1]].copy()
else:
img2=img[y:y+h, 0:img.shape[1]].copy()
else:
if x-(z//2)>0:
img2=img[y:y+h, x-(z//2):x+w+(z//2)].copy()
else:
img2=img[y:y+h, 0:x+w+(z//2)].copy()
if abs(h)<abs(w):
z=np.abs(h-w)
if img.shape[0]<y+h+(z//2):
if y-(z//2)>0:
img2=img[y-(z//2):img.shape[0], x:x+w].copy()
else:
img2=img[0:img.shape[0], x:x+w].copy()
else:
if y-(z//2)>0:
img2=img[y-(z//2):y+h+(z//2), x:x+w].copy()
else:
img2=img[0:y+h+(z//2), x:x+w].copy()
if abs(h)==abs(w):
img2=img[y:y + h, x:x + w].copy()
return img2
def crop_resize(path):
try:
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(path,False,True)
except:
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(path,True,True)
pass
img = np.copy(data)
#Denoise Image
kernel =( np.ones((5,5), dtype=np.float32))
img2=cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel,iterations=2 )
img2=cv2.erode(img2,kernel,iterations =2)
if len(img2.shape)==3:
img2=img2[:,:,0]
#Threshhold 100- 4096
ret,thresh = cv2.threshold(img2,100, 4096, cv2.THRESH_BINARY)
#To Thresh uint8 becasue "findContours" doesnt accept uint16
thresh =((thresh/np.max(thresh))*255).astype('uint8')
a1,b1=thresh.shape
#Find Countours
contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
#If There is no countour
if len(contours)==0:
return thresh,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex
#Get Areas
c_area=np.zeros([len(contours)])
for i in range(len(contours)):
c_area[i]= cv2.contourArea(contours[i])
#Find Max Countour
cnts=contours[np.argmax(c_area)]
x, y, w, h = cv2.boundingRect(cnts)
#Posibble Square
roi = croping(data, x, y, w, h)
# Absolute Square
roi=modification_cropping(roi)
# Resize to 256x256 with Inter_Nearest
roi=cv2.resize(roi,(256,256),interpolation=cv2.INTER_NEAREST)
return roi,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex
def put_text_point(original_img,heatpoint):
original_img =((original_img/np.max(original_img))*255).astype('uint8')
color = (0, 51, 204)
img = cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB)
for i in range(6):
if heatpoint[i,0]<=0 and heatpoint[i,1]<=0:
print("L"+str(i)+" There is no Point")
else :
if i>2:
coordx=0
coordy=-(i*3)
else:
coordx=-(i*3)
coordy=+(i*3)+10
img=cv2.putText(img, "L"+str(i),(heatpoint[i,0]+coordx,heatpoint[i,1]+coordy), cv2.FONT_HERSHEY_SIMPLEX,0.35, color, 1)
img = cv2.circle(img, (heatpoint[i,0],heatpoint[i,1]), radius=2, color=color, thickness=-1)
return img
def get_vector(pt1,pt2):
vec=np.zeros([2])
vec[1]=(pt2[1]-pt1[1])
vec[0]=(pt2[0]-pt1[0])
return vec
def dotproduct(v1, v2):
return sum((a*b) for a, b in zip(v1, v2))
def length(v):
return math.sqrt(dotproduct(v, v))
def getAngle(v1, v2):
if length(v1)==0 or length(v2)==0:
return "Failed"
return math.degrees(math.acos(dotproduct(v1, v2) / (length(v1) * length(v2))))
def bisector_vector(v1,v2):
if length(v1)==0 or length(v2) ==0:
return [0,0]
v1=v1/(length(v1))
v2=v2/(length(v2))
v3=(v1+v2)
return v3
#magnitude 50 length to l1 to l3
def angle_patellercongruence(heatpoint,magnitude=50):
v1=get_vector(heatpoint[1,:],heatpoint[2,:])
v2=get_vector(heatpoint[1,:],heatpoint[0,:])
v3=get_vector(heatpoint[1,:],heatpoint[3,:])
v4=bisector_vector(v1,v2)
v=np.int32(v4*magnitude)
coord=v+heatpoint[1,:]
if length(v3)==0:
return "Failed",[0,0]
angle_patellercongruence=getAngle(v3/(length(v3)),v4)
return angle_patellercongruence,coord
def angle_paraleltilt_displacement(heatpoint):
v1=get_vector(heatpoint[4,:],heatpoint[5,:])
v2=get_vector(heatpoint[0,:],heatpoint[2,:])
angle_paraleltilt=getAngle(v1,v2)
return angle_paraleltilt
def draw_angle(img,heatpoint):
color = (255, 26, 26)
color2=(255, 255, 0)
color3=(51, 255, 51)
if np.min(heatpoint[0:3,:])<=0:
patellercongruence,angle_paraleltilt="Failed"
return img
if np.min(heatpoint[3:,:])<=0:
angle_paraleltilt="Failed"
v1=get_vector(heatpoint[1,:],heatpoint[2,:])
v2=get_vector(heatpoint[1,:],heatpoint[0,:])
angle=getAngle(v1,v2)
patellercongruence,coord=angle_patellercongruence(heatpoint)
angle_paraleltilt=angle_paraleltilt_displacement(heatpoint)
img=cv2.line(img,tuple( (heatpoint[1,:])), tuple((heatpoint[2,:])), color, thickness=1, lineType=8)
img=cv2.line(img, tuple((heatpoint[1,:])), tuple((heatpoint[0,:])), color, thickness=1, lineType=8)
img=cv2.line(img, tuple((heatpoint[1,:])), tuple((heatpoint[3,:])), color2, thickness=1, lineType=8)
img=cv2.line(img, tuple((heatpoint[4,:])), tuple((heatpoint[5,:])), color3, thickness=1, lineType=8)
img=cv2.line(img, tuple((heatpoint[0,:])), tuple((heatpoint[2,:])), color3, thickness=1, lineType=8)
img=cv2.line(img,tuple( (heatpoint[1,:])), tuple(coord), color2, thickness=1, lineType=8)
img=cv2.putText(img,"Pateller Congruence Angle :"+str(round(patellercongruence,2)),(25,25), cv2.FONT_HERSHEY_SIMPLEX,0.35, color2, 1)
img=cv2.putText(img,"Paralel Tilt Angle :"+str(round(angle_paraleltilt,2)),(50,50), cv2.FONT_HERSHEY_SIMPLEX,0.35, color3, 1)
img=cv2.putText(img, "Angle :"+str(round(angle,2)),(heatpoint[1,0]+10,heatpoint[1,1]+15), cv2.FONT_HERSHEY_SIMPLEX,0.35, color,1)
return img,patellercongruence,angle_paraleltilt
def predict(img,model):
#Normalization
img=np.float32(img/(np.max(img)))
img=np.reshape(img,(1,256,256,1))
predictions=model.predict(img)
#Get Final Prediction
pre=predictions[-1]
return pre