SerdarHelli
commited on
Commit
•
6983ecb
1
Parent(s):
5198e72
Update app.py
Browse files
app.py
CHANGED
@@ -1,134 +1,134 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import streamlit as st
|
6 |
-
|
7 |
-
from PIL import Image
|
8 |
-
import numpy as np
|
9 |
-
import cv2
|
10 |
-
from Utils import *
|
11 |
-
from huggingface_hub import from_pretrained_keras
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
model=from_pretrained_keras("SerdarHelli/Knee-View-Merchant-Landmark-Detection")
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
st.subheader("Upload Merchant Knee View")
|
21 |
-
image_file = st.file_uploader("Upload Images", type=["dcm"])
|
22 |
-
|
23 |
-
|
24 |
-
examples=["1.3.46.670589.30.1.6.1.149885691756583.1510655758812.1.dcm"
|
25 |
-
,"1.2.392.200036.9125.9.0.235868094.418384128.208354950.dcm",
|
26 |
-
"1.2.392.200036.9107.500.304.423.20170526.173028.10423.dcm"]
|
27 |
-
|
28 |
-
colx1, colx2, colx3 = st.columns(3)
|
29 |
-
|
30 |
-
|
31 |
-
st.text("Merchant Knee View Dicom Examples ")
|
32 |
-
|
33 |
-
with colx1:
|
34 |
-
st.text("Example -1 ")
|
35 |
-
|
36 |
-
if st.button('Example 1'):
|
37 |
-
image_file=examples[0]
|
38 |
-
|
39 |
-
with colx2:
|
40 |
-
st.text("Example -2 ")
|
41 |
-
|
42 |
-
if st.button('Example 2'):
|
43 |
-
image_file=examples[1]
|
44 |
-
|
45 |
-
|
46 |
-
with colx3:
|
47 |
-
st.text("Example -3 ")
|
48 |
-
|
49 |
-
if st.button('Example 3'):
|
50 |
-
image_file=examples[2]
|
51 |
-
|
52 |
-
|
53 |
-
if image_file is not None:
|
54 |
-
st.text("Making A Prediction ....")
|
55 |
-
|
56 |
-
|
57 |
-
try:
|
58 |
-
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(image_file,False,True)
|
59 |
-
except:
|
60 |
-
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(image_file,True,True)
|
61 |
-
pass
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
img = np.copy(data)
|
66 |
-
|
67 |
-
#Denoise Image
|
68 |
-
kernel =( np.ones((5,5), dtype=np.float32))
|
69 |
-
img2=cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel,iterations=2 )
|
70 |
-
img2=cv2.erode(img2,kernel,iterations =2)
|
71 |
-
if len(img2.shape)==3:
|
72 |
-
img2=img2[:,:,0]
|
73 |
-
|
74 |
-
#Threshhold 100- 4096
|
75 |
-
ret,thresh = cv2.threshold(img2,100, 4096, cv2.THRESH_BINARY)
|
76 |
-
|
77 |
-
#To Thresh uint8 becasue "findContours" doesnt accept uint16
|
78 |
-
thresh =((thresh/np.max(thresh))*255).astype('uint8')
|
79 |
-
a1,b1=thresh.shape
|
80 |
-
#Find Countours
|
81 |
-
contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
82 |
-
|
83 |
-
#If There is no countour
|
84 |
-
if len(contours)==0:
|
85 |
-
roi= thresh
|
86 |
-
|
87 |
-
else:
|
88 |
-
#Get Areas
|
89 |
-
c_area=np.zeros([len(contours)])
|
90 |
-
for i in range(len(contours)):
|
91 |
-
c_area[i]= cv2.contourArea(contours[i])
|
92 |
-
|
93 |
-
#Find Max Countour
|
94 |
-
cnts=contours[np.argmax(c_area)]
|
95 |
-
x, y, w, h = cv2.boundingRect(cnts)
|
96 |
-
|
97 |
-
#Posibble Square
|
98 |
-
roi = croping(data, x, y, w, h)
|
99 |
-
|
100 |
-
# Absolute Square
|
101 |
-
roi=modification_cropping(roi)
|
102 |
-
|
103 |
-
# Resize to 256x256 with Inter_Nearest
|
104 |
-
roi=cv2.resize(roi,(256,256),interpolation=cv2.INTER_NEAREST)
|
105 |
-
|
106 |
-
pre=predict(roi,model)
|
107 |
-
heatpoint=points_max_value(pre)
|
108 |
-
output=put_text_point(roi,heatpoint)
|
109 |
-
output,PatellerCongruenceAngle,ParalelTiltAngle=draw_angle(output,heatpoint)
|
110 |
-
data_text = {'PatientID': PatientID, 'PatientName': PatientName,
|
111 |
-
'Pateller_Congruence_Angle': PatellerCongruenceAngle,
|
112 |
-
'Paralel_Tilt_Angle':ParalelTiltAngle,
|
113 |
-
'SOP_Instance_UID':SOPInstanceUID,
|
114 |
-
"StudyDate" :StudyDate,
|
115 |
-
"InstitutionName" :InstitutionAddress,
|
116 |
-
"PatientAge" :PatientAge ,
|
117 |
-
"PatientSex" :PatientSex,
|
118 |
-
}
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
st.text("Original Dicom Image")
|
123 |
-
|
124 |
-
st.image(np.uint8((data/np.max(data)*255)),width=450)
|
125 |
-
|
126 |
-
|
127 |
-
st.text("Predicted and Cropped-Resized Image ")
|
128 |
-
|
129 |
-
st.image(np.uint8(output),width=450)
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
st.write(data_text)
|
134 |
-
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
import cv2
|
10 |
+
from Utils import *
|
11 |
+
from huggingface_hub import from_pretrained_keras
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
model=from_pretrained_keras("SerdarHelli/Knee-View-Merchant-Landmark-Detection",use_auth_token=True)
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
st.subheader("Upload Merchant Knee View")
|
21 |
+
image_file = st.file_uploader("Upload Images", type=["dcm"])
|
22 |
+
|
23 |
+
|
24 |
+
examples=["1.3.46.670589.30.1.6.1.149885691756583.1510655758812.1.dcm"
|
25 |
+
,"1.2.392.200036.9125.9.0.235868094.418384128.208354950.dcm",
|
26 |
+
"1.2.392.200036.9107.500.304.423.20170526.173028.10423.dcm"]
|
27 |
+
|
28 |
+
colx1, colx2, colx3 = st.columns(3)
|
29 |
+
|
30 |
+
|
31 |
+
st.text("Merchant Knee View Dicom Examples ")
|
32 |
+
|
33 |
+
with colx1:
|
34 |
+
st.text("Example -1 ")
|
35 |
+
|
36 |
+
if st.button('Example 1'):
|
37 |
+
image_file=examples[0]
|
38 |
+
|
39 |
+
with colx2:
|
40 |
+
st.text("Example -2 ")
|
41 |
+
|
42 |
+
if st.button('Example 2'):
|
43 |
+
image_file=examples[1]
|
44 |
+
|
45 |
+
|
46 |
+
with colx3:
|
47 |
+
st.text("Example -3 ")
|
48 |
+
|
49 |
+
if st.button('Example 3'):
|
50 |
+
image_file=examples[2]
|
51 |
+
|
52 |
+
|
53 |
+
if image_file is not None:
|
54 |
+
st.text("Making A Prediction ....")
|
55 |
+
|
56 |
+
|
57 |
+
try:
|
58 |
+
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(image_file,False,True)
|
59 |
+
except:
|
60 |
+
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(image_file,True,True)
|
61 |
+
pass
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
img = np.copy(data)
|
66 |
+
|
67 |
+
#Denoise Image
|
68 |
+
kernel =( np.ones((5,5), dtype=np.float32))
|
69 |
+
img2=cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel,iterations=2 )
|
70 |
+
img2=cv2.erode(img2,kernel,iterations =2)
|
71 |
+
if len(img2.shape)==3:
|
72 |
+
img2=img2[:,:,0]
|
73 |
+
|
74 |
+
#Threshhold 100- 4096
|
75 |
+
ret,thresh = cv2.threshold(img2,100, 4096, cv2.THRESH_BINARY)
|
76 |
+
|
77 |
+
#To Thresh uint8 becasue "findContours" doesnt accept uint16
|
78 |
+
thresh =((thresh/np.max(thresh))*255).astype('uint8')
|
79 |
+
a1,b1=thresh.shape
|
80 |
+
#Find Countours
|
81 |
+
contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
82 |
+
|
83 |
+
#If There is no countour
|
84 |
+
if len(contours)==0:
|
85 |
+
roi= thresh
|
86 |
+
|
87 |
+
else:
|
88 |
+
#Get Areas
|
89 |
+
c_area=np.zeros([len(contours)])
|
90 |
+
for i in range(len(contours)):
|
91 |
+
c_area[i]= cv2.contourArea(contours[i])
|
92 |
+
|
93 |
+
#Find Max Countour
|
94 |
+
cnts=contours[np.argmax(c_area)]
|
95 |
+
x, y, w, h = cv2.boundingRect(cnts)
|
96 |
+
|
97 |
+
#Posibble Square
|
98 |
+
roi = croping(data, x, y, w, h)
|
99 |
+
|
100 |
+
# Absolute Square
|
101 |
+
roi=modification_cropping(roi)
|
102 |
+
|
103 |
+
# Resize to 256x256 with Inter_Nearest
|
104 |
+
roi=cv2.resize(roi,(256,256),interpolation=cv2.INTER_NEAREST)
|
105 |
+
|
106 |
+
pre=predict(roi,model)
|
107 |
+
heatpoint=points_max_value(pre)
|
108 |
+
output=put_text_point(roi,heatpoint)
|
109 |
+
output,PatellerCongruenceAngle,ParalelTiltAngle=draw_angle(output,heatpoint)
|
110 |
+
data_text = {'PatientID': PatientID, 'PatientName': PatientName,
|
111 |
+
'Pateller_Congruence_Angle': PatellerCongruenceAngle,
|
112 |
+
'Paralel_Tilt_Angle':ParalelTiltAngle,
|
113 |
+
'SOP_Instance_UID':SOPInstanceUID,
|
114 |
+
"StudyDate" :StudyDate,
|
115 |
+
"InstitutionName" :InstitutionAddress,
|
116 |
+
"PatientAge" :PatientAge ,
|
117 |
+
"PatientSex" :PatientSex,
|
118 |
+
}
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
st.text("Original Dicom Image")
|
123 |
+
|
124 |
+
st.image(np.uint8((data/np.max(data)*255)),width=450)
|
125 |
+
|
126 |
+
|
127 |
+
st.text("Predicted and Cropped-Resized Image ")
|
128 |
+
|
129 |
+
st.image(np.uint8(output),width=450)
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
st.write(data_text)
|
134 |
+
|