SerdarHelli
commited on
Commit
•
a9abdf6
1
Parent(s):
8895ab5
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
import tensorflow as tf
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
import cv2
|
11 |
+
from Utils import *
|
12 |
+
|
13 |
+
model_path="C:/Users/pc/Desktop/Merchant_Landmark_V1_30122021/30122021SavedModels/SavedModel100Epochs"
|
14 |
+
model = tf.keras.models.load_model(model_path,custom_objects=None)
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
st.subheader("Upload Merchant Knee View")
|
20 |
+
image_file = st.file_uploader("Upload Images", type=["dcm"])
|
21 |
+
|
22 |
+
|
23 |
+
examples=["C:/Users/pc/Desktop/Merchant_Landmark_V1_30122021/Dicoms/1.2.392.200036.9107.500.304.423.20111205.94459.10423.dcm"
|
24 |
+
,"C:/Users/pc/Desktop/Merchant_Landmark_V1_30122021/Dicoms/1.2.392.200036.9107.500.304.423.20120225.115452.10423.dcm",
|
25 |
+
"C:/Users/pc/Desktop/Merchant_Landmark_V1_30122021/Dicoms/1.2.392.200036.9107.500.304.423.20120509.174735.10423.dcm"]
|
26 |
+
|
27 |
+
colx1, colx2, colx3 = st.columns(3)
|
28 |
+
with colx1:
|
29 |
+
st.text("Example Dicom ")
|
30 |
+
|
31 |
+
if st.button('Example 1'):
|
32 |
+
image_file=examples[0]
|
33 |
+
|
34 |
+
with colx2:
|
35 |
+
st.text("Example Dicom ")
|
36 |
+
|
37 |
+
if st.button('Example 2'):
|
38 |
+
image_file=examples[1]
|
39 |
+
|
40 |
+
|
41 |
+
with colx3:
|
42 |
+
st.text("Example Dicom ")
|
43 |
+
|
44 |
+
if st.button('Example 3'):
|
45 |
+
image_file=examples[2]
|
46 |
+
|
47 |
+
|
48 |
+
if image_file is not None:
|
49 |
+
st.text("Making A Prediction ....")
|
50 |
+
|
51 |
+
|
52 |
+
try:
|
53 |
+
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(image_file,False,True)
|
54 |
+
except:
|
55 |
+
data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(image_file,True,True)
|
56 |
+
pass
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
img = np.copy(data)
|
61 |
+
|
62 |
+
#Denoise Image
|
63 |
+
kernel =( np.ones((5,5), dtype=np.float32))
|
64 |
+
img2=cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel,iterations=2 )
|
65 |
+
img2=cv2.erode(img2,kernel,iterations =2)
|
66 |
+
if len(img2.shape)==3:
|
67 |
+
img2=img2[:,:,0]
|
68 |
+
|
69 |
+
#Threshhold 100- 4096
|
70 |
+
ret,thresh = cv2.threshold(img2,100, 4096, cv2.THRESH_BINARY)
|
71 |
+
|
72 |
+
#To Thresh uint8 becasue "findContours" doesnt accept uint16
|
73 |
+
thresh =((thresh/np.max(thresh))*255).astype('uint8')
|
74 |
+
a1,b1=thresh.shape
|
75 |
+
#Find Countours
|
76 |
+
contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
77 |
+
|
78 |
+
#If There is no countour
|
79 |
+
if len(contours)==0:
|
80 |
+
roi= thresh
|
81 |
+
|
82 |
+
else:
|
83 |
+
#Get Areas
|
84 |
+
c_area=np.zeros([len(contours)])
|
85 |
+
for i in range(len(contours)):
|
86 |
+
c_area[i]= cv2.contourArea(contours[i])
|
87 |
+
|
88 |
+
#Find Max Countour
|
89 |
+
cnts=contours[np.argmax(c_area)]
|
90 |
+
x, y, w, h = cv2.boundingRect(cnts)
|
91 |
+
|
92 |
+
#Posibble Square
|
93 |
+
roi = croping(data, x, y, w, h)
|
94 |
+
|
95 |
+
# Absolute Square
|
96 |
+
roi=modification_cropping(roi)
|
97 |
+
|
98 |
+
# Resize to 256x256 with Inter_Nearest
|
99 |
+
roi=cv2.resize(roi,(256,256),interpolation=cv2.INTER_NEAREST)
|
100 |
+
|
101 |
+
pre=predict(roi,model)
|
102 |
+
heatpoint=points_max_value(pre)
|
103 |
+
output=put_text_point(roi,heatpoint)
|
104 |
+
output,PatellerCongruenceAngle,ParalelTiltAngle=draw_angle(output,heatpoint)
|
105 |
+
data_text = {'PatientID': PatientID, 'PatientName': PatientName,
|
106 |
+
'Pateller_Congruence_Angle': PatellerCongruenceAngle,
|
107 |
+
'Paralel_Tilt_Angle':ParalelTiltAngle,
|
108 |
+
'SOP_Instance_UID':SOPInstanceUID,
|
109 |
+
"StudyDate" :StudyDate,
|
110 |
+
"InstitutionName" :InstitutionAddress,
|
111 |
+
"PatientAge" :PatientAge ,
|
112 |
+
"PatientSex" :PatientSex,
|
113 |
+
}
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
col1, col2 = st.columns(2)
|
118 |
+
with col1:
|
119 |
+
st.text("Original Dicom Image")
|
120 |
+
|
121 |
+
st.image(np.uint8((data/np.max(data)*255)),width=350)
|
122 |
+
|
123 |
+
|
124 |
+
with col2:
|
125 |
+
st.text("Predicted Image ")
|
126 |
+
|
127 |
+
st.image(np.uint8(output),width=350)
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
st.write(data_text)
|
132 |
+
|