import streamlit as st import os from PIL import Image import numpy as np import cv2 from Utils import * from huggingface_hub import hf_hub_download,from_pretrained_keras model = from_pretrained_keras("SerdarHelli/Knee-View-Merchant-Landmark-Detection") st.header("Knee Merchant Landmark Detection") st.markdown("***Measurement of Merchant Angles is a fully automated method to measure Patellar Congruence Angle and Tilt Angle on Merchant Knee radiographs, employing CNN landmark localizers*** ") link='[S.Serdar Helli and Andaç Hamamcı - Yeditepe Medical Imaging Lab. ! ](https://imagingyeditepe.github.io/software.html)' st.markdown(link,unsafe_allow_html=True) image_file = st.file_uploader("Upload Images", type=["dcm"]) st.text("Merchant Knee View Dicom Examples ") examples=["1.3.46.670589.30.1.6.1.149885691756583.1510655758812.1.dcm" ,"1.2.392.200036.9125.9.0.235868094.418384128.208354950.dcm", "1.2.392.200036.9107.500.304.423.20170526.173028.10423.dcm"] colx1, colx2, colx3 = st.columns(3) with colx1: st.text("Example -1 ") if st.button('Example 1'): image_file=examples[0] with colx2: st.text("Example -2 ") if st.button('Example 2'): image_file=examples[1] with colx3: st.text("Example -3 ") if st.button('Example 3'): image_file=examples[2] if image_file is not None: st.text("Making A Prediction ....") try: data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(image_file,False,True) except: data,PatientName,PatientID,SOPInstanceUID,StudyDate,InstitutionAddress,PatientAge,PatientSex=read_dicom(image_file,True,True) pass img = np.copy(data) #Denoise Image kernel =( np.ones((5,5), dtype=np.float32)) img2=cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel,iterations=2 ) img2=cv2.erode(img2,kernel,iterations =2) if len(img2.shape)==3: img2=img2[:,:,0] #Threshhold 100- 4096 ret,thresh = cv2.threshold(img2,100, 4096, cv2.THRESH_BINARY) #To Thresh uint8 becasue "findContours" doesnt accept uint16 thresh =((thresh/np.max(thresh))*255).astype('uint8') a1,b1=thresh.shape #Find Countours contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) #If There is no countour if len(contours)==0: roi= thresh else: #Get Areas c_area=np.zeros([len(contours)]) for i in range(len(contours)): c_area[i]= cv2.contourArea(contours[i]) #Find Max Countour cnts=contours[np.argmax(c_area)] x, y, w, h = cv2.boundingRect(cnts) #Posibble Square roi = croping(data, x, y, w, h) # Absolute Square roi=modification_cropping(roi) # Resize to 256x256 with Inter_Nearest roi=cv2.resize(roi,(256,256),interpolation=cv2.INTER_NEAREST) pre=predict(roi,model) heatpoint=points_max_value(pre) output=put_text_point(roi,heatpoint) output,PatellerCongruenceAngle,ParalelTiltAngle=draw_angle(output,heatpoint) data_text = {'PatientID': PatientID, 'PatientName': PatientName, 'Pateller_Congruence_Angle': PatellerCongruenceAngle, 'Paralel_Tilt_Angle':ParalelTiltAngle, 'SOP_Instance_UID':SOPInstanceUID, "StudyDate" :StudyDate, "InstitutionName" :InstitutionAddress, "PatientAge" :PatientAge , "PatientSex" :PatientSex, } st.text("Original Dicom Image") st.image(np.uint8((data/np.max(data)*255)),width=450) st.text("Predicted and Cropped-Resized Image ") st.image(np.uint8(output),width=450) st.write(data_text)