File size: 12,448 Bytes
b440279
 
 
d64da46
1dd069e
 
 
b440279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d64da46
 
 
 
 
 
 
 
 
b440279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d64da46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b440279
 
 
9512fe8
b440279
d64da46
 
 
 
 
b440279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd069e
 
 
b440279
1dd069e
b440279
1dd069e
b440279
 
 
 
 
 
 
 
 
 
 
1dd069e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d64da46
1dd069e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import sys
import os

os.system("https://github.com/dunbar12138/pix2pix3D.git")
sys.path.append("pix2pix3D")

from typing import List, Optional, Tuple, Union
import dnnlib
import numpy as np
import PIL.Image
import torch
from tqdm import tqdm

import legacy
from camera_utils import LookAtPoseSampler
from huggingface_hub import hf_hub_download
from matplotlib import pyplot as plt
from pathlib import Path
import gradio as gr
from training.utils import color_mask, color_list
import plotly.graph_objects as go
from tqdm import tqdm
import imageio
import trimesh
import mcubes
import copy

import pickle
import numpy as np
import torch
import dnnlib
from torch_utils import misc
from legacy import *
import io

os.environ["PYOPENGL_PLATFORM"] = "egl"


def get_sigma_field_np(nerf, styles, resolution=512, block_resolution=64):
    # return numpy array of forwarded sigma value
    # bound = (nerf.rendering_kwargs['ray_end'] - nerf.rendering_kwargs['ray_start']) * 0.5
    bound = nerf.rendering_kwargs['box_warp'] * 0.5
    X = torch.linspace(-bound, bound, resolution).split(block_resolution)

    sigma_np = np.zeros([resolution, resolution, resolution], dtype=np.float32)

    for xi, xs in enumerate(X):
        for yi, ys in enumerate(X):
            for zi, zs in enumerate(X):
                xx, yy, zz = torch.meshgrid(xs, ys, zs)
                pts = torch.stack([xx, yy, zz], dim=-1).unsqueeze(0).to(styles.device)  # B, H, H, H, C
                block_shape = [1, len(xs), len(ys), len(zs)]
                out = nerf.sample_mixed(pts.reshape(1,-1,3), None, ws=styles, noise_mode='const')
                feat_out, sigma_out = out['rgb'], out['sigma']
                sigma_np[xi * block_resolution: xi * block_resolution + len(xs), \
                yi * block_resolution: yi * block_resolution + len(ys), \
                zi * block_resolution: zi * block_resolution + len(zs)] = sigma_out.reshape(block_shape[1:]).detach().cpu().numpy()
                # print(feat_out.shape)

    return sigma_np, bound


def extract_geometry(nerf, styles, resolution, threshold):

    # print('threshold: {}'.format(threshold))
    u, bound = get_sigma_field_np(nerf, styles, resolution)
    vertices, faces = mcubes.marching_cubes(u, threshold)
    # vertices, faces, normals, values = skimage.measure.marching_cubes(
    #     u, level=10
    # )
    b_min_np = np.array([-bound, -bound, -bound])
    b_max_np = np.array([ bound,  bound,  bound])

    vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
    return vertices.astype('float32'), faces
def render_video(G, ws, intrinsics, num_frames = 120, pitch_range = 0.25, yaw_range = 0.35, neural_rendering_resolution = 128, device='cuda'):
    frames, frames_label = [], []

    for frame_idx in tqdm(range(num_frames)):
        cam2world_pose = LookAtPoseSampler.sample(3.14/2 + yaw_range * np.sin(2 * 3.14 * frame_idx / num_frames),
                                                3.14/2 -0.05 + pitch_range * np.cos(2 * 3.14 * frame_idx / num_frames),
                                                torch.tensor(G.rendering_kwargs['avg_camera_pivot'], device=device), radius=G.rendering_kwargs['avg_camera_radius'], device=device)
        pose = torch.cat([cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1)
        with torch.no_grad():
            # out = G(z, pose, {'mask': batch['mask'].unsqueeze(0).to(device), 'pose': torch.tensor(batch['pose']).unsqueeze(0).to(device)})
            out = G.synthesis(ws, pose, noise_mode='const', neural_rendering_resolution=neural_rendering_resolution)
        frames.append(((out['image'].cpu().numpy()[0] + 1) * 127.5).clip(0, 255).astype(np.uint8).transpose(1, 2, 0))
        frames_label.append(color_mask(torch.argmax(out['semantic'], dim=1).cpu().numpy()[0]).astype(np.uint8))

    return frames, frames_label

def return_plot_go(mesh_trimesh):
  x=np.asarray(mesh_trimesh.vertices).T[0]
  y=np.asarray(mesh_trimesh.vertices).T[1]
  z=np.asarray(mesh_trimesh.vertices).T[2]

  i=np.asarray(mesh_trimesh.faces).T[0]
  j=np.asarray(mesh_trimesh.faces).T[1]
  k=np.asarray(mesh_trimesh.faces).T[2]
  fig = go.Figure(go.Mesh3d(x=x, y=y, z=z, 
                i=i, j=j, k=k, 
                vertexcolor=np.asarray(mesh_trimesh.visual.vertex_colors) ,
              lighting=dict(ambient=0.5,
                            diffuse=1,
                            fresnel=4,        
                            specular=0.5,
                            roughness=0.05,
                            facenormalsepsilon=0,
                            vertexnormalsepsilon=0),
              lightposition=dict(x=100,
                                y=100,
                                z=1000)))
  return fig



network_cat=hf_hub_download("SerdarHelli/pix2pix3d_seg2cat", filename="pix2pix3d_seg2cat.pkl",revision="main")

models={"seg2cat":network_cat
        }

device='cuda' if torch.cuda.is_available() else 'cpu'
outdir="/content/"
class CPU_Unpickler(pickle.Unpickler):
    def find_class(self, module, name):
        if module == 'torch.storage' and name == '_load_from_bytes':
            return lambda b: torch.load(io.BytesIO(b), map_location='cpu')
        return super().find_class(module, name)

def load_network_pkl_cpu(f, force_fp16=False):
    data = CPU_Unpickler(f).load()

    # Legacy TensorFlow pickle => convert.
    if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data):
        tf_G, tf_D, tf_Gs = data
        G = convert_tf_generator(tf_G)
        D = convert_tf_discriminator(tf_D)
        G_ema = convert_tf_generator(tf_Gs)
        data = dict(G=G, D=D, G_ema=G_ema)

    # Add missing fields.
    if 'training_set_kwargs' not in data:
        data['training_set_kwargs'] = None
    if 'augment_pipe' not in data:
        data['augment_pipe'] = None

    # Validate contents.
    assert isinstance(data['G'], torch.nn.Module)
    assert isinstance(data['D'], torch.nn.Module)
    assert isinstance(data['G_ema'], torch.nn.Module)
    assert isinstance(data['training_set_kwargs'], (dict, type(None)))
    assert isinstance(data['augment_pipe'], (torch.nn.Module, type(None)))

    # Force FP16.
    if force_fp16:
        for key in ['G', 'D', 'G_ema']:
            old = data[key]
            kwargs = copy.deepcopy(old.init_kwargs)
            fp16_kwargs = kwargs.get('synthesis_kwargs', kwargs)
            fp16_kwargs.num_fp16_res = 4
            fp16_kwargs.conv_clamp = 256
            if kwargs != old.init_kwargs:
                new = type(old)(**kwargs).eval().requires_grad_(False)
                misc.copy_params_and_buffers(old, new, require_all=True)
                data[key] = new
    return data

def get_all(cfg,input,truncation_psi,mesh_resolution,random_seed,fps,num_frames):

        network=models[cfg]

        if device=="cpu":
          with dnnlib.util.open_url(network) as f:
              G = load_network_pkl_cpu(f)['G_ema'].eval().to(device)
        else:    
          with dnnlib.util.open_url(network) as f:
                G = legacy.load_network_pkl(f)['G_ema'].eval().to(device)

        if cfg == 'seg2cat' or cfg == 'seg2face':
            neural_rendering_resolution = 128
            data_type = 'seg'
            # Initialize pose sampler.
            forward_cam2world_pose = LookAtPoseSampler.sample(3.14/2, 3.14/2, torch.tensor(G.rendering_kwargs['avg_camera_pivot'], device=device), 
                                                            radius=G.rendering_kwargs['avg_camera_radius'], device=device)
            focal_length = 4.2647 # shapenet has higher FOV
            intrinsics = torch.tensor([[focal_length, 0, 0.5], [0, focal_length, 0.5], [0, 0, 1]], device=device)
            forward_pose = torch.cat([forward_cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1)
        elif cfg == 'edge2car':
            neural_rendering_resolution = 64
            data_type= 'edge'
        else:
            print('Invalid cfg')

        save_dir = Path(outdir)

        input_label = PIL.Image.open(input)
        input_label = PIL.ImageOps.grayscale(input_label)
        input_label = np.asarray(input_label).astype(np.uint8)
        input_label = torch.from_numpy(input_label).unsqueeze(0).unsqueeze(0).to(device)
        print(input_label.shape)
        input_pose = forward_pose.to(device)

        # Generate videos
        z = torch.from_numpy(np.random.RandomState(int(0)).randn(1, G.z_dim).astype('float32')).to(device)

        with torch.no_grad():
            ws = G.mapping(z, input_pose, {'mask': input_label, 'pose': input_pose})
            out = G.synthesis(ws, input_pose, noise_mode='const', neural_rendering_resolution=neural_rendering_resolution)

        image_color = ((out['image'][0].permute(1, 2, 0).cpu().numpy().clip(-1, 1) + 1) * 127.5).astype(np.uint8)
        image_seg = color_mask(torch.argmax(out['semantic'][0], dim=0).cpu().numpy()).astype(np.uint8)
        mesh_trimesh = trimesh.Trimesh(*extract_geometry(G, ws, resolution=mesh_resolution, threshold=50.))

        verts_np = np.array(mesh_trimesh.vertices)
        colors = torch.zeros((verts_np.shape[0], 3), device=device)
        semantic_colors = torch.zeros((verts_np.shape[0], 6), device=device)
        samples_color = torch.tensor(verts_np, device=device).unsqueeze(0).float()

        head = 0
        max_batch = 10000000
        with tqdm(total = verts_np.shape[0]) as pbar:
            with torch.no_grad():
                while head < verts_np.shape[0]:
                    torch.manual_seed(0)
                    out = G.sample_mixed(samples_color[:, head:head+max_batch], None, ws, truncation_psi=truncation_psi, noise_mode='const')
                    # sigma = out['sigma']
                    colors[head:head+max_batch, :] = out['rgb'][0,:,:3]
                    seg = out['rgb'][0, :, 32:32+6]
                    semantic_colors[head:head+max_batch, :] = seg
                    # semantics[:, head:head+max_batch] = out['semantic']
                    head += max_batch
                    pbar.update(max_batch)

        semantic_colors = torch.tensor(color_list,device=device)[torch.argmax(semantic_colors, dim=-1)]

        mesh_trimesh.visual.vertex_colors = semantic_colors.cpu().numpy().astype(np.uint8)
        frames, frames_label = render_video(G, ws, intrinsics, num_frames = num_frames, pitch_range = 0.25, yaw_range = 0.35, neural_rendering_resolution=neural_rendering_resolution, device=device)

        # Save the video
        video=save_dir / f'{cfg}_color.mp4'
        video_label=save_dir / f'{cfg}_label.mp4'
        imageio.mimsave(video, frames, fps=fps)
        imageio.mimsave(video_label, frames_label, fps=fps),
        fig_mesh=return_plot_go(mesh_trimesh)
        return fig_mesh,image_color,image_seg,video,video_label

title="3D-aware Conditional Image Synthesis"
desc=f'''

  [Arxiv:  "3D-aware Conditional Image Synthesis".](https://arxiv.org/abs/2302.08509)

  [Project Page.](https://www.cs.cmu.edu/~pix2pix3D/)

  [For the official implementation.](https://github.com/dunbar12138/pix2pix3D)

  ### Future Work based on interest
  - Adding new models for new type objects
  - New Customization 
  
  
  It is running on {device}
  The process can take long time.Especially ,To generate videos and the time of process depends the number of frames,Mesh Resolution and current compiler device.
  
'''
demo_inputs=[
    gr.Dropdown(choices=["seg2cat"],label="Choose Model",value="seg2cat"),
    gr.Image(type="filepath",shape=(512, 512),label="Mask"),
    gr.Slider( minimum=0, maximum=2,label='Truncation PSI',value=1),
    gr.Slider( minimum=32, maximum=512,label='Mesh Resolution',value=32),
    gr.Slider( minimum=0, maximum=2**16,label='Seed',value=128),
    gr.Slider( minimum=10, maximum=120,label='FPS',value=30),
    gr.Slider( minimum=10, maximum=120,label='The Number of Frames',value=30),

]
demo_outputs=[
    gr.Plot(),
    gr.Image(type="pil",shape=(256,256)),
    gr.Image(type="pil",shape=(256,256)),
    gr.Video(),
    gr.Video()

]
examples = [
    ["seg2cat", "example_input.png", 1, 32, 128, 30, 30],

]
    

demo_app = gr.Interface(
    fn=get_all,
    inputs=demo_inputs,
    outputs=demo_outputs,
    cache_examples=True,
    title=title,
    theme="huggingface",
    description=desc,
    examples=examples,
    cache_examples=True,
)
demo_app.launch(debug=True, enable_queue=True)