Spaces:
Runtime error
Runtime error
File size: 12,448 Bytes
b440279 d64da46 1dd069e b440279 d64da46 b440279 d64da46 b440279 9512fe8 b440279 d64da46 b440279 1dd069e b440279 1dd069e b440279 1dd069e b440279 1dd069e d64da46 1dd069e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import sys
import os
os.system("https://github.com/dunbar12138/pix2pix3D.git")
sys.path.append("pix2pix3D")
from typing import List, Optional, Tuple, Union
import dnnlib
import numpy as np
import PIL.Image
import torch
from tqdm import tqdm
import legacy
from camera_utils import LookAtPoseSampler
from huggingface_hub import hf_hub_download
from matplotlib import pyplot as plt
from pathlib import Path
import gradio as gr
from training.utils import color_mask, color_list
import plotly.graph_objects as go
from tqdm import tqdm
import imageio
import trimesh
import mcubes
import copy
import pickle
import numpy as np
import torch
import dnnlib
from torch_utils import misc
from legacy import *
import io
os.environ["PYOPENGL_PLATFORM"] = "egl"
def get_sigma_field_np(nerf, styles, resolution=512, block_resolution=64):
# return numpy array of forwarded sigma value
# bound = (nerf.rendering_kwargs['ray_end'] - nerf.rendering_kwargs['ray_start']) * 0.5
bound = nerf.rendering_kwargs['box_warp'] * 0.5
X = torch.linspace(-bound, bound, resolution).split(block_resolution)
sigma_np = np.zeros([resolution, resolution, resolution], dtype=np.float32)
for xi, xs in enumerate(X):
for yi, ys in enumerate(X):
for zi, zs in enumerate(X):
xx, yy, zz = torch.meshgrid(xs, ys, zs)
pts = torch.stack([xx, yy, zz], dim=-1).unsqueeze(0).to(styles.device) # B, H, H, H, C
block_shape = [1, len(xs), len(ys), len(zs)]
out = nerf.sample_mixed(pts.reshape(1,-1,3), None, ws=styles, noise_mode='const')
feat_out, sigma_out = out['rgb'], out['sigma']
sigma_np[xi * block_resolution: xi * block_resolution + len(xs), \
yi * block_resolution: yi * block_resolution + len(ys), \
zi * block_resolution: zi * block_resolution + len(zs)] = sigma_out.reshape(block_shape[1:]).detach().cpu().numpy()
# print(feat_out.shape)
return sigma_np, bound
def extract_geometry(nerf, styles, resolution, threshold):
# print('threshold: {}'.format(threshold))
u, bound = get_sigma_field_np(nerf, styles, resolution)
vertices, faces = mcubes.marching_cubes(u, threshold)
# vertices, faces, normals, values = skimage.measure.marching_cubes(
# u, level=10
# )
b_min_np = np.array([-bound, -bound, -bound])
b_max_np = np.array([ bound, bound, bound])
vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
return vertices.astype('float32'), faces
def render_video(G, ws, intrinsics, num_frames = 120, pitch_range = 0.25, yaw_range = 0.35, neural_rendering_resolution = 128, device='cuda'):
frames, frames_label = [], []
for frame_idx in tqdm(range(num_frames)):
cam2world_pose = LookAtPoseSampler.sample(3.14/2 + yaw_range * np.sin(2 * 3.14 * frame_idx / num_frames),
3.14/2 -0.05 + pitch_range * np.cos(2 * 3.14 * frame_idx / num_frames),
torch.tensor(G.rendering_kwargs['avg_camera_pivot'], device=device), radius=G.rendering_kwargs['avg_camera_radius'], device=device)
pose = torch.cat([cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1)
with torch.no_grad():
# out = G(z, pose, {'mask': batch['mask'].unsqueeze(0).to(device), 'pose': torch.tensor(batch['pose']).unsqueeze(0).to(device)})
out = G.synthesis(ws, pose, noise_mode='const', neural_rendering_resolution=neural_rendering_resolution)
frames.append(((out['image'].cpu().numpy()[0] + 1) * 127.5).clip(0, 255).astype(np.uint8).transpose(1, 2, 0))
frames_label.append(color_mask(torch.argmax(out['semantic'], dim=1).cpu().numpy()[0]).astype(np.uint8))
return frames, frames_label
def return_plot_go(mesh_trimesh):
x=np.asarray(mesh_trimesh.vertices).T[0]
y=np.asarray(mesh_trimesh.vertices).T[1]
z=np.asarray(mesh_trimesh.vertices).T[2]
i=np.asarray(mesh_trimesh.faces).T[0]
j=np.asarray(mesh_trimesh.faces).T[1]
k=np.asarray(mesh_trimesh.faces).T[2]
fig = go.Figure(go.Mesh3d(x=x, y=y, z=z,
i=i, j=j, k=k,
vertexcolor=np.asarray(mesh_trimesh.visual.vertex_colors) ,
lighting=dict(ambient=0.5,
diffuse=1,
fresnel=4,
specular=0.5,
roughness=0.05,
facenormalsepsilon=0,
vertexnormalsepsilon=0),
lightposition=dict(x=100,
y=100,
z=1000)))
return fig
network_cat=hf_hub_download("SerdarHelli/pix2pix3d_seg2cat", filename="pix2pix3d_seg2cat.pkl",revision="main")
models={"seg2cat":network_cat
}
device='cuda' if torch.cuda.is_available() else 'cpu'
outdir="/content/"
class CPU_Unpickler(pickle.Unpickler):
def find_class(self, module, name):
if module == 'torch.storage' and name == '_load_from_bytes':
return lambda b: torch.load(io.BytesIO(b), map_location='cpu')
return super().find_class(module, name)
def load_network_pkl_cpu(f, force_fp16=False):
data = CPU_Unpickler(f).load()
# Legacy TensorFlow pickle => convert.
if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data):
tf_G, tf_D, tf_Gs = data
G = convert_tf_generator(tf_G)
D = convert_tf_discriminator(tf_D)
G_ema = convert_tf_generator(tf_Gs)
data = dict(G=G, D=D, G_ema=G_ema)
# Add missing fields.
if 'training_set_kwargs' not in data:
data['training_set_kwargs'] = None
if 'augment_pipe' not in data:
data['augment_pipe'] = None
# Validate contents.
assert isinstance(data['G'], torch.nn.Module)
assert isinstance(data['D'], torch.nn.Module)
assert isinstance(data['G_ema'], torch.nn.Module)
assert isinstance(data['training_set_kwargs'], (dict, type(None)))
assert isinstance(data['augment_pipe'], (torch.nn.Module, type(None)))
# Force FP16.
if force_fp16:
for key in ['G', 'D', 'G_ema']:
old = data[key]
kwargs = copy.deepcopy(old.init_kwargs)
fp16_kwargs = kwargs.get('synthesis_kwargs', kwargs)
fp16_kwargs.num_fp16_res = 4
fp16_kwargs.conv_clamp = 256
if kwargs != old.init_kwargs:
new = type(old)(**kwargs).eval().requires_grad_(False)
misc.copy_params_and_buffers(old, new, require_all=True)
data[key] = new
return data
def get_all(cfg,input,truncation_psi,mesh_resolution,random_seed,fps,num_frames):
network=models[cfg]
if device=="cpu":
with dnnlib.util.open_url(network) as f:
G = load_network_pkl_cpu(f)['G_ema'].eval().to(device)
else:
with dnnlib.util.open_url(network) as f:
G = legacy.load_network_pkl(f)['G_ema'].eval().to(device)
if cfg == 'seg2cat' or cfg == 'seg2face':
neural_rendering_resolution = 128
data_type = 'seg'
# Initialize pose sampler.
forward_cam2world_pose = LookAtPoseSampler.sample(3.14/2, 3.14/2, torch.tensor(G.rendering_kwargs['avg_camera_pivot'], device=device),
radius=G.rendering_kwargs['avg_camera_radius'], device=device)
focal_length = 4.2647 # shapenet has higher FOV
intrinsics = torch.tensor([[focal_length, 0, 0.5], [0, focal_length, 0.5], [0, 0, 1]], device=device)
forward_pose = torch.cat([forward_cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1)
elif cfg == 'edge2car':
neural_rendering_resolution = 64
data_type= 'edge'
else:
print('Invalid cfg')
save_dir = Path(outdir)
input_label = PIL.Image.open(input)
input_label = PIL.ImageOps.grayscale(input_label)
input_label = np.asarray(input_label).astype(np.uint8)
input_label = torch.from_numpy(input_label).unsqueeze(0).unsqueeze(0).to(device)
print(input_label.shape)
input_pose = forward_pose.to(device)
# Generate videos
z = torch.from_numpy(np.random.RandomState(int(0)).randn(1, G.z_dim).astype('float32')).to(device)
with torch.no_grad():
ws = G.mapping(z, input_pose, {'mask': input_label, 'pose': input_pose})
out = G.synthesis(ws, input_pose, noise_mode='const', neural_rendering_resolution=neural_rendering_resolution)
image_color = ((out['image'][0].permute(1, 2, 0).cpu().numpy().clip(-1, 1) + 1) * 127.5).astype(np.uint8)
image_seg = color_mask(torch.argmax(out['semantic'][0], dim=0).cpu().numpy()).astype(np.uint8)
mesh_trimesh = trimesh.Trimesh(*extract_geometry(G, ws, resolution=mesh_resolution, threshold=50.))
verts_np = np.array(mesh_trimesh.vertices)
colors = torch.zeros((verts_np.shape[0], 3), device=device)
semantic_colors = torch.zeros((verts_np.shape[0], 6), device=device)
samples_color = torch.tensor(verts_np, device=device).unsqueeze(0).float()
head = 0
max_batch = 10000000
with tqdm(total = verts_np.shape[0]) as pbar:
with torch.no_grad():
while head < verts_np.shape[0]:
torch.manual_seed(0)
out = G.sample_mixed(samples_color[:, head:head+max_batch], None, ws, truncation_psi=truncation_psi, noise_mode='const')
# sigma = out['sigma']
colors[head:head+max_batch, :] = out['rgb'][0,:,:3]
seg = out['rgb'][0, :, 32:32+6]
semantic_colors[head:head+max_batch, :] = seg
# semantics[:, head:head+max_batch] = out['semantic']
head += max_batch
pbar.update(max_batch)
semantic_colors = torch.tensor(color_list,device=device)[torch.argmax(semantic_colors, dim=-1)]
mesh_trimesh.visual.vertex_colors = semantic_colors.cpu().numpy().astype(np.uint8)
frames, frames_label = render_video(G, ws, intrinsics, num_frames = num_frames, pitch_range = 0.25, yaw_range = 0.35, neural_rendering_resolution=neural_rendering_resolution, device=device)
# Save the video
video=save_dir / f'{cfg}_color.mp4'
video_label=save_dir / f'{cfg}_label.mp4'
imageio.mimsave(video, frames, fps=fps)
imageio.mimsave(video_label, frames_label, fps=fps),
fig_mesh=return_plot_go(mesh_trimesh)
return fig_mesh,image_color,image_seg,video,video_label
title="3D-aware Conditional Image Synthesis"
desc=f'''
[Arxiv: "3D-aware Conditional Image Synthesis".](https://arxiv.org/abs/2302.08509)
[Project Page.](https://www.cs.cmu.edu/~pix2pix3D/)
[For the official implementation.](https://github.com/dunbar12138/pix2pix3D)
### Future Work based on interest
- Adding new models for new type objects
- New Customization
It is running on {device}
The process can take long time.Especially ,To generate videos and the time of process depends the number of frames,Mesh Resolution and current compiler device.
'''
demo_inputs=[
gr.Dropdown(choices=["seg2cat"],label="Choose Model",value="seg2cat"),
gr.Image(type="filepath",shape=(512, 512),label="Mask"),
gr.Slider( minimum=0, maximum=2,label='Truncation PSI',value=1),
gr.Slider( minimum=32, maximum=512,label='Mesh Resolution',value=32),
gr.Slider( minimum=0, maximum=2**16,label='Seed',value=128),
gr.Slider( minimum=10, maximum=120,label='FPS',value=30),
gr.Slider( minimum=10, maximum=120,label='The Number of Frames',value=30),
]
demo_outputs=[
gr.Plot(),
gr.Image(type="pil",shape=(256,256)),
gr.Image(type="pil",shape=(256,256)),
gr.Video(),
gr.Video()
]
examples = [
["seg2cat", "example_input.png", 1, 32, 128, 30, 30],
]
demo_app = gr.Interface(
fn=get_all,
inputs=demo_inputs,
outputs=demo_outputs,
cache_examples=True,
title=title,
theme="huggingface",
description=desc,
examples=examples,
cache_examples=True,
)
demo_app.launch(debug=True, enable_queue=True)
|