SeyedAli's picture
Update app.py
2a4a8ca
raw
history blame
1.92 kB
import tempfile
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
import gradio as gr
from transformers import Wav2Vec2FeatureExtractor,AutoConfig
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification
config = AutoConfig.from_pretrained("SeyedAli/Persian-Speech-Emotion-HuBert-V1")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("SeyedAli/Persian-Speech-Emotion-HuBert-V1")
model = HubertForSpeechClassification.from_pretrained("SeyedAli/Persian-Speech-Emotion-HuBert-V1")
sampling_rate = feature_extractor.sampling_rate
audio_input = gr.Audio(label="صوت گفتار فارسی",type="filepath")
text_output = gr.TextArea(label="هیجان موجود در صوت گفتار",text_align="right",rtl=True,type="text")
def SER(audio):
with tempfile.NamedTemporaryFile(suffix=".wav") as temp_audio_file:
# Copy the contents of the uploaded audio file to the temporary file
temp_audio_file.write(open(audio, "rb").read())
temp_audio_file.flush()
# Load the audio file using torchaudio
speech_array, _sampling_rate = torchaudio.load(temp_audio_file.name)
resampler = torchaudio.transforms.Resample(_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key] for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
return outputs
iface = gr.Interface(fn=SER, inputs=audio_input, outputs=text_output)
iface.launch(share=False)