Spaces:
Runtime error
Runtime error
Update app.txt
Browse files
app.txt
CHANGED
@@ -1,10 +1,30 @@
|
|
|
|
1 |
import torchaudio
|
2 |
-
import librosa
|
3 |
from transformers import Wav2Vec2ForCTC,Wav2Vec2Processor,pipeline
|
|
|
4 |
processor = Wav2Vec2Processor.from_pretrained(model_name_or_path)
|
5 |
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian")
|
6 |
-
def ASR(Audio):
|
7 |
-
audiofile=torchaudio.load(Audio,16000)
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
iface.launch(share=False)
|
|
|
1 |
+
import torch
|
2 |
import torchaudio
|
|
|
3 |
from transformers import Wav2Vec2ForCTC,Wav2Vec2Processor,pipeline
|
4 |
+
|
5 |
processor = Wav2Vec2Processor.from_pretrained(model_name_or_path)
|
6 |
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian")
|
|
|
|
|
7 |
|
8 |
+
def speech_file_to_array_fn(path, sampling_rate):
|
9 |
+
speech_array, _sampling_rate = torchaudio.load(path)
|
10 |
+
resampler = torchaudio.transforms.Resample(_sampling_rate)
|
11 |
+
speech = resampler(speech_array).squeeze().numpy()
|
12 |
+
return speech
|
13 |
+
|
14 |
+
def predict(path, sampling_rate):
|
15 |
+
speech = speech_file_to_array_fn(path, sampling_rate)
|
16 |
+
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
17 |
+
inputs = {key: inputs[key].to(device) for key in inputs}
|
18 |
+
|
19 |
+
with torch.no_grad():
|
20 |
+
logits = model(**inputs).logits
|
21 |
+
|
22 |
+
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
23 |
+
outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
|
24 |
+
return outputs
|
25 |
+
|
26 |
+
def SER(Audio):
|
27 |
+
return predict(Audio,16000)
|
28 |
+
|
29 |
+
iface = gr.Interface(fn=SER, inputs="audio", outputs="text")
|
30 |
iface.launch(share=False)
|