Spaces:
Runtime error
Runtime error
File size: 6,098 Bytes
aa8012e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import io
import os
import time
from pathlib import Path
import requests
from PIL import Image
API_ENDPOINT = "https://api.bfl.ml"
class ApiException(Exception):
def __init__(self, status_code: int, detail: str = None):
super().__init__()
self.detail = detail
self.status_code = status_code
def __str__(self) -> str:
return self.__repr__()
def __repr__(self) -> str:
if self.detail is None:
message = None
elif isinstance(self.detail, str):
message = self.detail
else:
message = "[" + ",".join(d["msg"] for d in self.detail) + "]"
return f"ApiException({self.status_code=}, {message=}, detail={self.detail})"
class ImageRequest:
def __init__(
self,
prompt: str,
width: int = 1024,
height: int = 1024,
name: str = "flux.1-pro",
num_steps: int = 50,
prompt_upsampling: bool = False,
seed: int = None,
validate: bool = True,
launch: bool = True,
api_key: str = None,
):
"""
Manages an image generation request to the API.
Args:
prompt: Prompt to sample
width: Width of the image in pixel
height: Height of the image in pixel
name: Name of the model
num_steps: Number of network evaluations
prompt_upsampling: Use prompt upsampling
seed: Fix the generation seed
validate: Run input validation
launch: Directly launches request
api_key: Your API key if not provided by the environment
Raises:
ValueError: For invalid input
ApiException: For errors raised from the API
"""
if validate:
if name not in ["flux.1-pro"]:
raise ValueError(f"Invalid model {name}")
elif width % 32 != 0:
raise ValueError(f"width must be divisible by 32, got {width}")
elif not (256 <= width <= 1440):
raise ValueError(f"width must be between 256 and 1440, got {width}")
elif height % 32 != 0:
raise ValueError(f"height must be divisible by 32, got {height}")
elif not (256 <= height <= 1440):
raise ValueError(f"height must be between 256 and 1440, got {height}")
elif not (1 <= num_steps <= 50):
raise ValueError(f"steps must be between 1 and 50, got {num_steps}")
self.request_json = {
"prompt": prompt,
"width": width,
"height": height,
"variant": name,
"steps": num_steps,
"prompt_upsampling": prompt_upsampling,
}
if seed is not None:
self.request_json["seed"] = seed
self.request_id: str = None
self.result: dict = None
self._image_bytes: bytes = None
self._url: str = None
if api_key is None:
self.api_key = os.environ.get("BFL_API_KEY")
else:
self.api_key = api_key
if launch:
self.request()
def request(self):
"""
Request to generate the image.
"""
if self.request_id is not None:
return
response = requests.post(
f"{API_ENDPOINT}/v1/image",
headers={
"accept": "application/json",
"x-key": self.api_key,
"Content-Type": "application/json",
},
json=self.request_json,
)
result = response.json()
if response.status_code != 200:
raise ApiException(status_code=response.status_code, detail=result.get("detail"))
self.request_id = response.json()["id"]
def retrieve(self) -> dict:
"""
Wait for the generation to finish and retrieve response.
"""
if self.request_id is None:
self.request()
while self.result is None:
response = requests.get(
f"{API_ENDPOINT}/v1/get_result",
headers={
"accept": "application/json",
"x-key": self.api_key,
},
params={
"id": self.request_id,
},
)
result = response.json()
if "status" not in result:
raise ApiException(status_code=response.status_code, detail=result.get("detail"))
elif result["status"] == "Ready":
self.result = result["result"]
elif result["status"] == "Pending":
time.sleep(0.5)
else:
raise ApiException(status_code=200, detail=f"API returned status '{result['status']}'")
return self.result
@property
def bytes(self) -> bytes:
"""
Generated image as bytes.
"""
if self._image_bytes is None:
response = requests.get(self.url)
if response.status_code == 200:
self._image_bytes = response.content
else:
raise ApiException(status_code=response.status_code)
return self._image_bytes
@property
def url(self) -> str:
"""
Public url to retrieve the image from
"""
if self._url is None:
result = self.retrieve()
self._url = result["sample"]
return self._url
@property
def image(self) -> Image.Image:
"""
Load the image as a PIL Image
"""
return Image.open(io.BytesIO(self.bytes))
def save(self, path: str):
"""
Save the generated image to a local path
"""
suffix = Path(self.url).suffix
if not path.endswith(suffix):
path = path + suffix
Path(path).resolve().parent.mkdir(parents=True, exist_ok=True)
with open(path, "wb") as file:
file.write(self.bytes)
if __name__ == "__main__":
from fire import Fire
Fire(ImageRequest)
|