Spaces:
Runtime error
Runtime error
import os | |
import re | |
import time | |
from dataclasses import dataclass | |
from glob import iglob | |
import torch | |
from einops import rearrange | |
from fire import Fire | |
from PIL import ExifTags, Image | |
from transformers import pipeline | |
from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack | |
from flux.util import ( | |
configs, | |
load_ae, | |
load_clip, | |
load_flow_model, | |
load_t5, | |
) | |
NSFW_THRESHOLD = 0.85 | |
class SamplingOptions: | |
prompt: str | |
width: int | |
height: int | |
num_steps: int | |
guidance: float | |
seed: int | |
def parse_prompt(options: SamplingOptions) -> SamplingOptions: | |
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n" | |
usage = ( | |
"Usage: Either write your prompt directly, leave this field empty " | |
"to repeat the prompt or write a command starting with a slash:\n" | |
"- '/w <width>' will set the width of the generated image\n" | |
"- '/h <height>' will set the height of the generated image\n" | |
"- '/s <seed>' sets the next seed\n" | |
"- '/g <guidance>' sets the guidance (flux-dev only)\n" | |
"- '/n <steps>' sets the number of steps\n" | |
"- '/q' to quit" | |
) | |
while (prompt := input(user_question)).startswith("/"): | |
if prompt.startswith("/w"): | |
if prompt.count(" ") != 1: | |
print(f"Got invalid command '{prompt}'\n{usage}") | |
continue | |
_, width = prompt.split() | |
options.width = 16 * (int(width) // 16) | |
print( | |
f"Setting resolution to {options.width} x {options.height} " | |
f"({options.height * options.width / 1e6:.2f}MP)" | |
) | |
elif prompt.startswith("/h"): | |
if prompt.count(" ") != 1: | |
print(f"Got invalid command '{prompt}'\n{usage}") | |
continue | |
_, height = prompt.split() | |
options.height = 16 * (int(height) // 16) | |
print( | |
f"Setting resolution to {options.width} x {options.height} " | |
f"({options.height * options.width / 1e6:.2f}MP)" | |
) | |
elif prompt.startswith("/g"): | |
if prompt.count(" ") != 1: | |
print(f"Got invalid command '{prompt}'\n{usage}") | |
continue | |
_, guidance = prompt.split() | |
options.guidance = float(guidance) | |
print(f"Setting guidance to {options.guidance}") | |
elif prompt.startswith("/s"): | |
if prompt.count(" ") != 1: | |
print(f"Got invalid command '{prompt}'\n{usage}") | |
continue | |
_, seed = prompt.split() | |
options.seed = int(seed) | |
print(f"Setting seed to {options.seed}") | |
elif prompt.startswith("/n"): | |
if prompt.count(" ") != 1: | |
print(f"Got invalid command '{prompt}'\n{usage}") | |
continue | |
_, steps = prompt.split() | |
options.num_steps = int(steps) | |
print(f"Setting seed to {options.num_steps}") | |
elif prompt.startswith("/q"): | |
print("Quitting") | |
return None | |
else: | |
if not prompt.startswith("/h"): | |
print(f"Got invalid command '{prompt}'\n{usage}") | |
print(usage) | |
if prompt != "": | |
options.prompt = prompt | |
return options | |
def main( | |
name: str = "flux-schnell", | |
width: int = 1360, | |
height: int = 768, | |
seed: int = None, | |
prompt: str = ( | |
"a photo of a forest with mist swirling around the tree trunks. The word " | |
'"FLUX" is painted over it in big, red brush strokes with visible texture' | |
), | |
device: str = "cuda" if torch.cuda.is_available() else "cpu", | |
num_steps: int = None, | |
loop: bool = False, | |
guidance: float = 3.5, | |
offload: bool = False, | |
output_dir: str = "output", | |
add_sampling_metadata: bool = True, | |
): | |
""" | |
Sample the flux model. Either interactively (set `--loop`) or run for a | |
single image. | |
Args: | |
name: Name of the model to load | |
height: height of the sample in pixels (should be a multiple of 16) | |
width: width of the sample in pixels (should be a multiple of 16) | |
seed: Set a seed for sampling | |
output_name: where to save the output image, `{idx}` will be replaced | |
by the index of the sample | |
prompt: Prompt used for sampling | |
device: Pytorch device | |
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled) | |
loop: start an interactive session and sample multiple times | |
guidance: guidance value used for guidance distillation | |
add_sampling_metadata: Add the prompt to the image Exif metadata | |
""" | |
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection") | |
if name not in configs: | |
available = ", ".join(configs.keys()) | |
raise ValueError(f"Got unknown model name: {name}, chose from {available}") | |
torch_device = torch.device(device) | |
if num_steps is None: | |
num_steps = 4 if name == "flux-schnell" else 50 | |
# allow for packing and conversion to latent space | |
height = 16 * (height // 16) | |
width = 16 * (width // 16) | |
output_name = os.path.join(output_dir, "img_{idx}.jpg") | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
idx = 0 | |
else: | |
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]\.jpg$", fn)] | |
if len(fns) > 0: | |
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1 | |
else: | |
idx = 0 | |
# init all components | |
t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512) | |
clip = load_clip(torch_device) | |
model = load_flow_model(name, device="cpu" if offload else torch_device) | |
ae = load_ae(name, device="cpu" if offload else torch_device) | |
rng = torch.Generator(device="cpu") | |
opts = SamplingOptions( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_steps=num_steps, | |
guidance=guidance, | |
seed=seed, | |
) | |
if loop: | |
opts = parse_prompt(opts) | |
while opts is not None: | |
if opts.seed is None: | |
opts.seed = rng.seed() | |
print(f"Generating with seed {opts.seed}:\n{opts.prompt}") | |
t0 = time.perf_counter() | |
# prepare input | |
x = get_noise( | |
1, | |
opts.height, | |
opts.width, | |
device=torch_device, | |
dtype=torch.bfloat16, | |
seed=opts.seed, | |
) | |
opts.seed = None | |
if offload: | |
ae = ae.cpu() | |
torch.cuda.empty_cache() | |
t5, clip = t5.to(torch_device), clip.to(torch_device) | |
inp = prepare(t5, clip, x, prompt=opts.prompt) | |
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell")) | |
# offload TEs to CPU, load model to gpu | |
if offload: | |
t5, clip = t5.cpu(), clip.cpu() | |
torch.cuda.empty_cache() | |
model = model.to(torch_device) | |
# denoise initial noise | |
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance) | |
# offload model, load autoencoder to gpu | |
if offload: | |
model.cpu() | |
torch.cuda.empty_cache() | |
ae.decoder.to(x.device) | |
# decode latents to pixel space | |
x = unpack(x.float(), opts.height, opts.width) | |
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16): | |
x = ae.decode(x) | |
t1 = time.perf_counter() | |
fn = output_name.format(idx=idx) | |
print(f"Done in {t1 - t0:.1f}s. Saving {fn}") | |
# bring into PIL format and save | |
x = x.clamp(-1, 1) | |
# x = embed_watermark(x.float()) | |
x = rearrange(x[0], "c h w -> h w c") | |
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) | |
nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0] | |
if nsfw_score < NSFW_THRESHOLD: | |
exif_data = Image.Exif() | |
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux" | |
exif_data[ExifTags.Base.Make] = "Black Forest Labs" | |
exif_data[ExifTags.Base.Model] = name | |
if add_sampling_metadata: | |
exif_data[ExifTags.Base.ImageDescription] = prompt | |
img.save(fn, exif=exif_data, quality=95, subsampling=0) | |
idx += 1 | |
else: | |
print("Your generated image may contain NSFW content.") | |
if loop: | |
print("-" * 80) | |
opts = parse_prompt(opts) | |
else: | |
opts = None | |
def app(): | |
Fire(main) | |
if __name__ == "__main__": | |
app() | |