ShadowTak commited on
Commit
d9ff4ea
1 Parent(s): 6b56484

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -59
app.py CHANGED
@@ -1,63 +1,38 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForCausalLM
2
+ import torch
3
 
4
+ model_id = "scb10x/llama-3-typhoon-v1.5-8b-instruct"
 
 
 
5
 
6
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
7
+ model = AutoModelForCausalLM.from_pretrained(
8
+ model_id,
9
+ torch_dtype=torch.bfloat16,
10
+ device_map="auto",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  )
12
 
13
+ messages = [
14
+ {"role": "system", "content": "You are a helpful assistant who're always speak Thai."},
15
+ {"role": "user", "content": "ขอสูตรไก่ย่าง"},
16
+ ]
17
+
18
+ input_ids = tokenizer.apply_chat_template(
19
+ messages,
20
+ add_generation_prompt=True,
21
+ return_tensors="pt"
22
+ ).to(model.device)
23
+
24
+ terminators = [
25
+ tokenizer.eos_token_id,
26
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
27
+ ]
28
+
29
+ outputs = model.generate(
30
+ input_ids,
31
+ max_new_tokens=512,
32
+ eos_token_id=terminators,
33
+ do_sample=True,
34
+ temperature=0.4,
35
+ top_p=0.9,
36
+ )
37
+ response = outputs[0][input_ids.shape[-1]:]
38
+ print(tokenizer.decode(response, skip_special_tokens=True))