Shankarm08 commited on
Commit
0e71eea
1 Parent(s): 44f7ed0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -11
app.py CHANGED
@@ -1,17 +1,15 @@
 
1
  import streamlit as st
 
2
  from langchain import HuggingFaceHub
3
- from dotenv import load_dotenv
4
- import os
5
-
6
 
 
7
  load_dotenv()
8
 
9
  # Set your Hugging Face API token from the environment variable
10
  HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_API_TOKEN")
11
 
12
-
13
-
14
- # Function to return the response from Hugging Face model
15
  def load_answer(question):
16
  try:
17
  # Initialize the Hugging Face model using LangChain's HuggingFaceHub class
@@ -21,16 +19,16 @@ def load_answer(question):
21
  model_kwargs={"temperature": 0} # Optional: Control response randomness
22
  )
23
 
24
- # Call the model with the user's question and get the response
25
- answer = llm.run(question)
26
  return answer
27
  except Exception as e:
28
  # Capture and return any exceptions or errors
29
  return f"Error: {str(e)}"
30
 
31
  # Streamlit App UI starts here
32
- st.set_page_config(page_title="LangChain Demo", page_icon=":robot:")
33
- st.header("LangChain Demo")
34
 
35
  # Function to get user input
36
  def get_text():
@@ -43,7 +41,7 @@ user_input = get_text()
43
  # Create a button for generating the response
44
  submit = st.button('Generate')
45
 
46
- # If generate button is clicked and user input is not empty
47
  if submit and user_input:
48
  response = load_answer(user_input)
49
  st.subheader("Answer:")
 
1
+ import os
2
  import streamlit as st
3
+ from dotenv import load_dotenv # Importing load_dotenv to load environment variables
4
  from langchain import HuggingFaceHub
 
 
 
5
 
6
+ # Load environment variables from the .env file
7
  load_dotenv()
8
 
9
  # Set your Hugging Face API token from the environment variable
10
  HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_API_TOKEN")
11
 
12
+ # Function to return the response from the Hugging Face model
 
 
13
  def load_answer(question):
14
  try:
15
  # Initialize the Hugging Face model using LangChain's HuggingFaceHub class
 
19
  model_kwargs={"temperature": 0} # Optional: Control response randomness
20
  )
21
 
22
+ # Call the model with the user's question and get the response using .predict()
23
+ answer = llm.predict(question)
24
  return answer
25
  except Exception as e:
26
  # Capture and return any exceptions or errors
27
  return f"Error: {str(e)}"
28
 
29
  # Streamlit App UI starts here
30
+ st.set_page_config(page_title="Hugging Face Demo", page_icon=":robot:")
31
+ st.header("Hugging Face Demo")
32
 
33
  # Function to get user input
34
  def get_text():
 
41
  # Create a button for generating the response
42
  submit = st.button('Generate')
43
 
44
+ # If the generate button is clicked and user input is not empty
45
  if submit and user_input:
46
  response = load_answer(user_input)
47
  st.subheader("Answer:")