Spaces:
Running
Running
File size: 3,191 Bytes
ad2ec01 048d6c5 ad2ec01 048d6c5 597e9d7 9667c43 048d6c5 ad2ec01 048d6c5 ad2ec01 048d6c5 ad2ec01 138a10c ad2ec01 048d6c5 ad2ec01 048d6c5 ad2ec01 048d6c5 ad2ec01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import os
import torch
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.text import split_and_recombine_text
from tortoise.utils.audio import load_audio, load_voice, load_voices
VOICE_OPTIONS = [
"Kasuri",
"A",
"angie",
"deniro",
"freeman",
"halle",
"lj",
"myself",
"pat2",
"snakes",
"tom",
"daws",
"dreams",
"grace",
"lescault",
"weaver",
"applejack",
"daniel",
"emma",
"geralt",
"jlaw",
"mol",
"pat",
"rainbow",
"tim_reynolds",
"atkins",
"dortice",
"empire",
"kennard",
"mouse",
"william",
"jane_eyre",
"random", # special option for random voice
]
def inference(
text,
script,
voice,
voice_b,
seed,
split_by_newline,
):
if text is None or text.strip() == "":
with open(script.name) as f:
text = f.read()
if text.strip() == "":
raise gr.Error("Please provide either text or script file with content.")
if split_by_newline == "Yes":
texts = list(filter(lambda x: x.strip() != "", text.split("\n")))
else:
texts = split_and_recombine_text(text)
voices = [voice]
if voice_b != "disabled":
voices.append(voice_b)
if len(voices) == 1:
voice_samples, conditioning_latents = load_voice(voice)
else:
voice_samples, conditioning_latents = load_voices(voices)
start_time = time.time()
# all_parts = []
for j, text in enumerate(texts):
for audio_frame in tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset="ultra_fast",
k=1
):
# print("Time taken: ", time.time() - start_time)
# all_parts.append(audio_frame)
yield (24000, audio_frame.cpu().detach().numpy())
# wav = torch.cat(all_parts, dim=0).unsqueeze(0)
# print(wav.shape)
# torchaudio.save("output.wav", wav.cpu(), 24000)
# yield (None, gr.make_waveform(audio="output.wav",))
def main():
title = "Tortoise TTS"
description = """
"""
text = gr.Textbox(
lines=4,
label="Text (Provide either text, or upload a newline separated text file below):",
)
voice = gr.Dropdown(
VOICE_OPTIONS, value="jane_eyre", label="Select voice:", type="value"
)
output_audio = gr.Audio(label="streaming audio:", streaming=True, autoplay=True)
# download_audio = gr.Audio(label="dowanload audio:")
interface = gr.Interface(
fn=inference,
inputs=[
text,
voice,
],
title=title,
description=description,
outputs=[output_audio],
)
interface.queue().launch()
if __name__ == "__main__":
tts = TextToSpeech(kv_cache=True, use_deepspeed=True, half=True)
with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
f.write(
f"\n\n-------------------------Tortoise TTS Scripts Logs, {datetime.now()}-------------------------\n"
)
main() |