Tortoise_TTS / app.py
Shanuka01's picture
Update app.py
9667c43 verified
raw
history blame
3.19 kB
import os
import torch
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.text import split_and_recombine_text
from tortoise.utils.audio import load_audio, load_voice, load_voices
VOICE_OPTIONS = [
"Kasuri",
"A",
"angie",
"deniro",
"freeman",
"halle",
"lj",
"myself",
"pat2",
"snakes",
"tom",
"daws",
"dreams",
"grace",
"lescault",
"weaver",
"applejack",
"daniel",
"emma",
"geralt",
"jlaw",
"mol",
"pat",
"rainbow",
"tim_reynolds",
"atkins",
"dortice",
"empire",
"kennard",
"mouse",
"william",
"jane_eyre",
"random", # special option for random voice
]
def inference(
text,
script,
voice,
voice_b,
seed,
split_by_newline,
):
if text is None or text.strip() == "":
with open(script.name) as f:
text = f.read()
if text.strip() == "":
raise gr.Error("Please provide either text or script file with content.")
if split_by_newline == "Yes":
texts = list(filter(lambda x: x.strip() != "", text.split("\n")))
else:
texts = split_and_recombine_text(text)
voices = [voice]
if voice_b != "disabled":
voices.append(voice_b)
if len(voices) == 1:
voice_samples, conditioning_latents = load_voice(voice)
else:
voice_samples, conditioning_latents = load_voices(voices)
start_time = time.time()
# all_parts = []
for j, text in enumerate(texts):
for audio_frame in tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset="ultra_fast",
k=1
):
# print("Time taken: ", time.time() - start_time)
# all_parts.append(audio_frame)
yield (24000, audio_frame.cpu().detach().numpy())
# wav = torch.cat(all_parts, dim=0).unsqueeze(0)
# print(wav.shape)
# torchaudio.save("output.wav", wav.cpu(), 24000)
# yield (None, gr.make_waveform(audio="output.wav",))
def main():
title = "Tortoise TTS"
description = """
"""
text = gr.Textbox(
lines=4,
label="Text (Provide either text, or upload a newline separated text file below):",
)
voice = gr.Dropdown(
VOICE_OPTIONS, value="jane_eyre", label="Select voice:", type="value"
)
output_audio = gr.Audio(label="streaming audio:", streaming=True, autoplay=True)
# download_audio = gr.Audio(label="dowanload audio:")
interface = gr.Interface(
fn=inference,
inputs=[
text,
voice,
],
title=title,
description=description,
outputs=[output_audio],
)
interface.queue().launch()
if __name__ == "__main__":
tts = TextToSpeech(kv_cache=True, use_deepspeed=True, half=True)
with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
f.write(
f"\n\n-------------------------Tortoise TTS Scripts Logs, {datetime.now()}-------------------------\n"
)
main()