import streamlit as st import google.generativeai as genai import os from groq import Groq, GroqError import whisper from gtts import gTTS import tempfile import logging import numpy as np from pydub import AudioSegment # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Securely configure Google API Key for generative AI (set this in the deployment environment) GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") genai.configure(api_key=GOOGLE_API_KEY) # Set up Groq API key for audio processing groq_api_key = os.getenv('groq_api_key') if not groq_api_key: raise ValueError("GROQ_API_KEY is not set.") try: groq_client = Groq(api_key=groq_api_key) logger.info("Groq API key is set and client is initialized.") except GroqError as e: logger.error(f"Failed to initialize Groq client: {e}") raise try: # Load Whisper model for audio transcription whisper_model = whisper.load_model("base") logger.info("Whisper model loaded successfully.") except Exception as e: logger.error(f"Failed to load Whisper model: {e}") raise # Initialize the Generative Model for heart health chatbot model = genai.GenerativeModel( 'gemini-1.5-flash', system_instruction=( "Persona: You are Dr. Assad Siddiqui, a heart specialist. Only provide information related to heart health, symptoms, and advice. " "Ask users about their heart-related symptoms and provide consultation and guidance based on their input. " "Always provide brief answers. If the inquiry is not related to heart health, politely say that you can only provide heart-related information. " "Responses should be in Urdu written in English and in English." ) ) # Function to get response from the Generative AI chatbot def get_chatbot_response(user_input): response = model.generate_content(user_input) return response.text.strip() # Function to process audio using Whisper, Groq, and gTTS def process_audio(audio_file): try: # Transcribe audio using Whisper result = whisper_model.transcribe(audio_file) user_text = result['text'] logger.info(f"Transcription successful: {user_text}") except Exception as e: logger.error(f"Error in transcribing audio: {e}") return "Error in transcribing audio.", None try: # Generate response using Groq API chat_completion = groq_client.chat.completions.create( messages=[ {"role": "user", "content": user_text} ], model="llama3-8b-8192", ) response_text = chat_completion.choices[0].message.content logger.info(f"Received response from Groq API: {response_text}") except GroqError as e: logger.error(f"Error in generating response with Groq API: {e}") return "Error in generating response with Groq API.", None try: # Convert response text to speech using gTTS tts = gTTS(text=response_text, lang='en') audio_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') tts.save(audio_file.name) logger.info("Text-to-speech conversion successful.") except Exception as e: logger.error(f"Error in text-to-speech conversion: {e}") return "Error in text-to-speech conversion.", None return response_text, audio_file.name # Streamlit page configuration st.set_page_config( page_title="Heart Health & Audio Chatbot", page_icon="👨‍⚕️", layout="centered", initial_sidebar_state="collapsed", ) # Background image and custom CSS st.markdown(""" """, unsafe_allow_html=True) # Custom header def load_header(): st.markdown("""

Heart Health & Audio Chatbot 🫀

Ask me anything about heart diseases or process audio queries!

""", unsafe_allow_html=True) # Initialize session state for chat history if "history" not in st.session_state: st.session_state.history = [] # Avatar URLs user_avatar_url = "https://img.freepik.com/free-photo/sad-cartoon-anatomical-heart_23-2149767987.jpg" bot_avatar_url = "https://img.freepik.com/premium-photo/3d-render-man-doctor-avatar-round-sticker-with-cartoon-character-face-user-id-thumbnail-modern-69_1181551-3160.jpg" # Function to display chat history def display_chat_history(): for chat in st.session_state.history: if chat["role"] == "user": st.markdown(f"""

You: {chat['content']}

""", unsafe_allow_html=True) else: st.markdown(f"""

Bot: {chat['content']}

""", unsafe_allow_html=True) # Main application layout def main(): load_header() with st.container(): display_chat_history() # User input for text-based chat with st.form(key="user_input_form", clear_on_submit=True): user_input = st.text_input( label="Type your message...", placeholder="Ask about heart health...", max_chars=500 ) submit_button = st.form_submit_button(label="Send") if submit_button and user_input.strip(): with st.spinner("Thinking..."): bot_response = get_chatbot_response(user_input) # Update chat history st.session_state.history.append({"role": "user", "content": user_input}) st.session_state.history.append({"role": "bot", "content": bot_response}) # Refresh chat display display_chat_history() # File uploader for audio processing st.subheader("Upload audio for processing") audio_file = st.file_uploader("Choose an audio file", type=["mp3", "wav"]) if audio_file is not None: with st.spinner("Processing audio..."): response_text, audio_response = process_audio(audio_file) st.text(f"Response: {response_text}") st.audio(audio_response) # Run the app if __name__ == "__main__": main()