Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,12 @@
|
|
1 |
-
#!pip install streamlit
|
2 |
-
|
3 |
-
|
4 |
# Install necessary libraries
|
5 |
-
|
6 |
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
import torch
|
9 |
import PyPDF2
|
10 |
import streamlit as st
|
11 |
|
12 |
-
#
|
13 |
def extract_text_from_pdf(pdf_path):
|
14 |
pdf_text = ""
|
15 |
with open(pdf_path, "rb") as file:
|
@@ -19,7 +16,7 @@ def extract_text_from_pdf(pdf_path):
|
|
19 |
pdf_text += page.extract_text()
|
20 |
return pdf_text
|
21 |
|
22 |
-
#
|
23 |
tokenizer = AutoTokenizer.from_pretrained("ricepaper/vi-gemma-2b-RAG")
|
24 |
model = AutoModelForCausalLM.from_pretrained(
|
25 |
"ricepaper/vi-gemma-2b-RAG",
|
@@ -31,7 +28,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
31 |
if torch.cuda.is_available():
|
32 |
model.to("cuda")
|
33 |
|
34 |
-
#
|
35 |
prompt = """
|
36 |
### Instruction and Input:
|
37 |
Based on the following context/document:
|
@@ -42,10 +39,10 @@ Please answer the question: {}
|
|
42 |
{}
|
43 |
"""
|
44 |
|
45 |
-
#
|
46 |
def generate_answer(context, query):
|
47 |
input_text = prompt.format(context, query, "")
|
48 |
-
input_ids = tokenizer(input_text, return_tensors="pt")
|
49 |
|
50 |
# Use GPU for input ids if available
|
51 |
if torch.cuda.is_available():
|
@@ -62,11 +59,28 @@ def generate_answer(context, query):
|
|
62 |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
63 |
return answer
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Install necessary libraries
|
2 |
+
#!pip install PyPDF2 transformers torch accelerate streamlit
|
3 |
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import torch
|
6 |
import PyPDF2
|
7 |
import streamlit as st
|
8 |
|
9 |
+
# Function to extract text from PDF
|
10 |
def extract_text_from_pdf(pdf_path):
|
11 |
pdf_text = ""
|
12 |
with open(pdf_path, "rb") as file:
|
|
|
16 |
pdf_text += page.extract_text()
|
17 |
return pdf_text
|
18 |
|
19 |
+
# Initialize the tokenizer and model
|
20 |
tokenizer = AutoTokenizer.from_pretrained("ricepaper/vi-gemma-2b-RAG")
|
21 |
model = AutoModelForCausalLM.from_pretrained(
|
22 |
"ricepaper/vi-gemma-2b-RAG",
|
|
|
28 |
if torch.cuda.is_available():
|
29 |
model.to("cuda")
|
30 |
|
31 |
+
# Define the prompt format for the model
|
32 |
prompt = """
|
33 |
### Instruction and Input:
|
34 |
Based on the following context/document:
|
|
|
39 |
{}
|
40 |
"""
|
41 |
|
42 |
+
# Function to generate answer based on query and context
|
43 |
def generate_answer(context, query):
|
44 |
input_text = prompt.format(context, query, "")
|
45 |
+
input_ids = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024)
|
46 |
|
47 |
# Use GPU for input ids if available
|
48 |
if torch.cuda.is_available():
|
|
|
59 |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
60 |
return answer
|
61 |
|
62 |
+
# Streamlit App
|
63 |
+
st.title("RAG-Based PDF Question Answering Application")
|
64 |
+
|
65 |
+
# Upload PDF
|
66 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")
|
67 |
+
|
68 |
+
if uploaded_file is not None:
|
69 |
+
# Extract text from the uploaded PDF
|
70 |
+
pdf_text = extract_text_from_pdf(uploaded_file)
|
71 |
+
|
72 |
+
st.write("Extracted text from PDF:")
|
73 |
+
st.text_area("PDF Content", pdf_text, height=200)
|
74 |
+
|
75 |
+
# User inputs their question
|
76 |
+
query = st.text_input("Enter your question about the PDF content:")
|
77 |
|
78 |
+
if st.button("Get Answer"):
|
79 |
+
if query.strip() != "":
|
80 |
+
# Generate answer based on extracted PDF text and the query
|
81 |
+
answer = generate_answer(pdf_text, query)
|
82 |
+
st.write("Answer:", answer)
|
83 |
+
else:
|
84 |
+
st.warning("Please enter a question.")
|
85 |
+
else:
|
86 |
+
st.info("Please upload a PDF file to get started.")
|