Spaces:
Runtime error
Runtime error
File size: 7,352 Bytes
cace86c 0b0d3ca 1591627 0b0d3ca cace86c 0b0d3ca cace86c 0b0d3ca cace86c 0b0d3ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import streamlit as st
from io import BytesIO
from PIL import Image
from transformers import ViltProcessor, ViltForQuestionAnswering
import requests
import torch
import torchvision
# from langchain_google_genai import GoogleGenerativeAI
# from langchain_google_genai import ChatGoogleGenerativeAI
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain.chat_models import ChatOpenAI
# from transformers import AutoProcessor, AutoModelForCausalLM
# from huggingface_hub import hf_hub_download
# from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
# from transformers import BlipProcessor, BlipForConditionalGeneration
import os
print(os.getenv('GOOGLE_API_KEY'))
# # os.environ["OPENAI_API_KEY"] = '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'
# os.environ["GOOGLE_API_KEY"] = 'AIzaSyAsZTv6rUZq0TAh6yfmVCDA0tPIcGU3VxA'
# # llm = ChatOpenAI(temperature=0.2, model_name="gpt-3.5-turbo")
# llm = ChatGoogleGenerativeAI(temperature=0.2, model="gemini-pro")
# prompt = PromptTemplate(
# input_variables=["question", "elements"],
# template="""You are a helpful assistant that can answer question related to an image. You have the ability to see the image and answer questions about it.
# I will give you a question and element about the image and you will answer the question.
# \n\n
# #Question: {question}
# #Elements: {elements}
# \n\n
# Your structured response:""",
# )
# def convert_png_to_jpg(image):
# rgb_image = image.convert('RGB')
# byte_arr = BytesIO()
# rgb_image.save(byte_arr, format='JPEG')
# byte_arr.seek(0)
# return Image.open(byte_arr)
# def vilt(image, query):
# processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
# model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
# encoding = processor(image, query, return_tensors="pt")
# outputs = model(**encoding)
# logits = outputs.logits
# idx = logits.argmax(-1).item()
# sol = model.config.id2label[idx]
# return sol
# def blip(image, query):
# processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
# model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
# # unconditional image captioning
# inputs = processor(image, return_tensors="pt")
# out = model.generate(**inputs)
# sol = processor.decode(out[0], skip_special_tokens=True)
# return sol
# def GIT(image, query):
# processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa")
# model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa")
# # file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
# # image = Image.open(file_path).convert("RGB")
# pixel_values = processor(images=image, return_tensors="pt").pixel_values
# question = query
# input_ids = processor(text=question, add_special_tokens=False).input_ids
# input_ids = [processor.tokenizer.cls_token_id] + input_ids
# input_ids = torch.tensor(input_ids).unsqueeze(0)
# generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
# response = processor.batch_decode(generated_ids, skip_special_tokens=True)
# generated_ids_1 = model.generate(pixel_values=pixel_values, max_length=50)
# generated_caption = processor.batch_decode(generated_ids_1, skip_special_tokens=True)[0]
# return response[0] + " " + generated_caption
# @st.cache_data(show_spinner="Processing image...")
# def generate_table(uploaded_file):
# image = Image.open(uploaded_file)
# print("graph start")
# model = Pix2StructForConditionalGeneration.from_pretrained('google/deplot')
# processor = Pix2StructProcessor.from_pretrained('google/deplot')
# print("graph start 1")
# inputs = processor(images=image, text="Generate underlying data table of the figure below and give the text as well:", return_tensors="pt")
# predictions = model.generate(**inputs, max_new_tokens=512)
# print("end")
# table = processor.decode(predictions[0], skip_special_tokens=True)
# print(table)
# return table
# def process_query(image, query):
# blip_sol = blip(image, query)
# vilt_sol = vilt(image, query)
# GIT_sol = GIT(image, query)
# llm_sol = blip_sol + " " + vilt_sol + " " + GIT_sol
# print(llm_sol)
# chain = LLMChain(llm=llm, prompt=prompt)
# response = chain.run(question=query, elements=llm_sol)
# return response
# def process_query_graph(data_table, query):
# prompt = PromptTemplate(
# input_variables=["question", "elements"],
# template="""You are a helpful assistant capable of answering questions related to graph images.
# You possess the ability to view the graph image and respond to inquiries about it.
# I will provide you with a question and the associated data table of the graph, and you will answer the question
# \n\n
# #Question: {question}
# #Elements: {elements}
# \n\n
# Your structured response:""",
# )
# chain = LLMChain(llm=llm, prompt=prompt)
# response = chain.run(question=query, elements=data_table)
# return response
# def chart_with_Image():
# st.header("Chat with Image", divider='rainbow')
# uploaded_file = st.file_uploader('Upload your IMAGE', type=['png', 'jpeg', 'jpg'], key="imageUploader")
# if uploaded_file is not None:
# image = Image.open(uploaded_file)
# # ViLT model only supports JPG images
# if image.format == 'PNG':
# image = convert_png_to_jpg(image)
# st.image(image, caption='Uploaded Image.', width=300)
# cancel_button = st.button('Cancel')
# query = st.text_input('Ask a question to the IMAGE')
# if query:
# with st.spinner('Processing...'):
# answer = process_query(image, query)
# st.write(answer)
# if cancel_button:
# st.stop()
# def chat_with_graph():
# st.header("Chat with Graph", divider='rainbow')
# uploaded_file = st.file_uploader('Upload your GRAPH', type=['png', 'jpeg', 'jpg'], key="graphUploader")
# if uploaded_file is not None:
# image = Image.open(uploaded_file)
# # if image.format == 'PNG':
# # image = convert_png_to_jpg(image)
# # data_table = generate_table(uploaded_file)
# st.image(image, caption='Uploaded Image.')
# data_table = generate_table(uploaded_file)
# cancel_button = st.button('Cancel')
# query = st.text_input('Ask a question to the IMAGE')
# if query:
# with st.spinner('Processing...'):
# answer = process_query_graph(data_table, query)
# st.write(answer)
# if cancel_button:
# st.stop()
# st.title("Image Querying App ")
# option = st.selectbox(
# "Who would you like to chart with?",
# ("Image", "Graph"),
# index=None,
# placeholder="Select contact method...",
# )
# st.write('You selected:', option)
# if option == "Image":
# chart_with_Image()
# elif option == "Graph":
# chat_with_graph() |