Spaces:
Sleeping
Sleeping
File size: 9,679 Bytes
32f760f 999c991 32f760f e3e493d 32f760f e3e493d 32f760f e3e493d 32f760f e3e493d 32f760f e3e493d 32f760f e3e493d 32f760f e3e493d 32f760f e3e493d 32f760f e3e493d 32f760f e3e493d 32f760f e3e493d 32f760f e3e493d 32f760f e3e493d 32f760f e3e493d 32f760f 0c47c63 32f760f 0c47c63 32f760f 0c47c63 32f760f 0c47c63 32f760f 0c47c63 eb2e963 32f760f eb2e963 0c47c63 32f760f 0c47c63 32f760f 0c47c63 32f760f 83efb6a 0c47c63 eb2e963 32f760f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import streamlit as st
import pandas as pd
import numpy as np
import torch
import evaluate
from datasets import load_dataset
from evaluate import load as load_metric
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from sklearn.metrics import accuracy_score, f1_score
from tqdm.auto import tqdm
from torch.utils.data import DataLoader
select = st.selectbox('Which model would you like to evaluate?',
('Bart', 'mBart'))
def get_datasets():
if select == 'Bart':
all_datasets = ["Communication Networks: unseen questions", "Communication Networks: unseen answers"]
if select == 'mBart':
all_datasets = ["Micro Job: unseen questions", "Micro Job: unseen answers", "Legal Domain: unseen questions", "Legal Domain: unseen answers"]
return all_datasets
all_datasets = get_datasets()
def get_split(dataset_name):
if dataset_name == "Communication Networks: unseen questions":
split = load_dataset("Short-Answer-Feedback/saf_communication_networks_english", split="test_unseen_questions")
if dataset_name == "Communication Networks: unseen answers":
split = load_dataset("Short-Answer-Feedback/saf_communication_networks_english", split="test_unseen_answers")
if dataset_name == "Micro Job: unseen questions":
split = load_dataset("Short-Answer-Feedback/saf_micro_job_german", split="test_unseen_questions")
if dataset_name == "Micro Job: unseen answers":
split = load_dataset("Short-Answer-Feedback/saf_micro_job_german", split="test_unseen_answers")
if dataset_name == "Legal Domain: unseen questions":
split = load_dataset("Short-Answer-Feedback/saf_legal_domain_german", split="test_unseen_questions")
if dataset_name == "Legal Domain: unseen answers":
split = load_dataset("Short-Answer-Feedback/saf_legal_domain_german", split="test_unseen_answers")
return split
def get_model(datasetname):
if datasetname == "Communication Networks: unseen questions" or datasetname == "Communication Networks: unseen answers":
model = "Short-Answer-Feedback/bart-finetuned-saf-communication-networks"
if datasetname == "Micro Job: unseen questions" or datasetname == "Micro Job: unseen answers":
model = "Short-Answer-Feedback/mbart-finetuned-saf-micro-job"
if datasetname == "Legal Domain: unseen questions" or datasetname == "Legal Domain: unseen answers":
model = "Short-Answer-Feedback/mbart-finetuned-saf-legal-domain"
return model
def get_tokenizer(datasetname):
if datasetname == "Communication Networks: unseen questions" or datasetname == "Communication Networks: unseen answers":
tokenizer = "Short-Answer-Feedback/bart-finetuned-saf-communication-networks"
if datasetname == "Micro Job: unseen questions" or datasetname == "Micro Job: unseen answers":
tokenizer = "Short-Answer-Feedback/mbart-finetuned-saf-micro-job"
if datasetname == "Legal Domain: unseen questions" or datasetname == "Legal Domain: unseen answers":
tokenizer = "Short-Answer-Feedback/mbart-finetuned-saf-legal-domain"
return tokenizer
sacrebleu = load_metric('sacrebleu')
rouge = load_metric('rouge')
meteor = load_metric('meteor')
bertscore = load_metric('bertscore')
MAX_INPUT_LENGTH = 256
MAX_TARGET_LENGTH = 128
def preprocess_function(examples):
"""
Preprocess entries of the given dataset
Params:
examples (Dataset): dataset to be preprocessed
Returns:
model_inputs (BatchEncoding): tokenized dataset entries
"""
inputs, targets = [], []
for i in range(len(examples['question'])):
inputs.append(f"Antwort: {examples['provided_answer'][i]} Lösung: {examples['reference_answer'][i]} Frage: {examples['question'][i]}")
targets.append(f"{examples['verification_feedback'][i]} Feedback: {examples['answer_feedback'][i]}")
# apply tokenization to inputs and labels
model_inputs = tokenizer(inputs, max_length=MAX_INPUT_LENGTH, padding='max_length', truncation=True)
labels = tokenizer(text_target=targets, max_length=MAX_TARGET_LENGTH, padding='max_length', truncation=True)
model_inputs['labels'] = labels['input_ids']
return model_inputs
def flatten_list(l):
"""
Utility function to convert a list of lists into a flattened list
Params:
l (list of lists): list to be flattened
Returns:
A flattened list with the elements of the original list
"""
return [item for sublist in l for item in sublist]
def extract_feedback(predictions):
"""
Utility function to extract the feedback from the predictions of the model
Params:
predictions (list): complete model predictions
Returns:
feedback (list): extracted feedback from the model's predictions
"""
feedback = []
# iterate through predictions and try to extract predicted feedback
for pred in predictions:
try:
fb = pred.split(':', 1)[1]
except IndexError:
try:
if pred.lower().startswith('partially correct'):
fb = pred.split(' ', 1)[2]
else:
fb = pred.split(' ', 1)[1]
except IndexError:
fb = pred
feedback.append(fb.strip())
return feedback
def extract_labels(predictions):
"""
Utility function to extract the labels from the predictions of the model
Params:
predictions (list): complete model predictions
Returns:
feedback (list): extracted labels from the model's predictions
"""
labels = []
for pred in predictions:
if pred.lower().startswith('correct'):
label = 'Correct'
elif pred.lower().startswith('partially correct'):
label = 'Partially correct'
elif pred.lower().startswith('incorrect'):
label = 'Incorrect'
else:
label = 'Unknown label'
labels.append(label)
return labels
def get_predictions_labels(model, dataloader):
"""
Evaluate model on the given dataset
Params:
model (PreTrainedModel): seq2seq model
dataloader (torch Dataloader): dataloader of the dataset to be used for evaluation
Returns:
results (dict): dictionary with the computed evaluation metrics
predictions (list): list of the decoded predictions of the model
"""
decoded_preds, decoded_labels = [], []
model.eval()
# iterate through batchs in the dataloader
for batch in tqdm(dataloader):
with torch.no_grad():
batch = {k: v.to(device) for k, v in batch.items()}
# generate tokens from batch
generated_tokens = model.generate(
batch['input_ids'],
attention_mask=batch['attention_mask'],
max_length=MAX_TARGET_LENGTH
)
# get golden labels from batch
labels_batch = batch['labels']
# decode model predictions and golden labels
decoded_preds_batch = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
decoded_labels_batch = tokenizer.batch_decode(labels_batch, skip_special_tokens=True)
decoded_preds.append(decoded_preds_batch)
decoded_labels.append(decoded_labels_batch)
# convert predictions and golden labels into flattened lists
predictions = flatten_list(decoded_preds)
labels = flatten_list(decoded_labels)
return predictions, labels
def load_data():
df = pd.DataFrame(columns=['Model', 'Dataset', 'SacreBLEU', 'ROUGE-2', 'METEOR', 'BERTScore', 'Accuracy', 'Weighted F1', 'Macro F1'])
for ds in all_datasets:
split = get_split(ds)
model = AutoModelForSeq2SeqLM.from_pretrained(get_model(ds))
tokenizer = AutoTokenizer.from_pretrained(get_tokenizer(ds))
processed_dataset = split.map(
preprocess_function,
batched=True,
remove_columns=split.column_names
)
processed_dataset.set_format('torch')
dataloader = DataLoader(processed_dataset, batch_size=4)
predictions, labels = get_predictions_labels(model, dataloader)
predicted_feedback = extract_feedback(predictions)
predicted_labels = extract_labels(predictions)
reference_feedback = [x.split('Feedback:', 1)[1].strip() for x in labels]
reference_labels = [x.split('Feedback:', 1)[0].strip() for x in labels]
rouge_score = rouge.compute(predictions=predicted_feedback, references=reference_feedback)['rouge2']
bleu_score = sacrebleu.compute(predictions=predicted_feedback, references=[[x] for x in reference_feedback])['score']
meteor_score = meteor.compute(predictions=predicted_feedback, references=reference_feedback)['meteor']
bert_score = bertscore.compute(predictions=predicted_feedback, references=reference_feedback, lang='de', model_type='bert-base-multilingual-cased', rescale_with_baseline=True)
reference_labels_np = np.array(reference_labels)
accuracy_value = accuracy_score(reference_labels_np, predicted_labels)
f1_weighted_value = f1_score(reference_labels_np, predicted_labels, average='weighted')
f1_macro_value = f1_score(reference_labels_np, predicted_labels, average='macro', labels=['Incorrect', 'Partially correct', 'Correct'])
new_row_data = {"Model": get_model(ds), "Dataset": ds, "SacreBLEU": bleu_score, "ROUGE-2": rouge_score, "METEOR": meteor_score, "BERTScore": bert_score, "Accuracy": accuracy_value, "Weighted F1": f1_weighted_value, "Macro F1": f1_macro_value}
new_row = pd.DataFrame(new_row_data)
df = pd.concat([df, new_row])
return df
dataframe = load_data()
st.dataframe(dataframe) |