Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,694 Bytes
d10c5e3 b07d516 d10c5e3 dac5a69 16925eb 9d1687b a574374 16925eb 9d1687b a574374 16925eb 614b653 9d1687b 614b653 a574374 16925eb 9d1687b 10ed629 6ccc433 16925eb a574374 dac5a69 9ef0c39 d10c5e3 9ef0c39 d10c5e3 b07d516 d10c5e3 b07d516 d10c5e3 e5c2b2d d10c5e3 e5c2b2d 59afb84 a81d387 9bb67a6 25e344b b07d516 25e344b a81d387 25e344b a81d387 25e344b a81d387 25e344b a81d387 25e344b a81d387 25e344b a81d387 25e344b a2298a0 a81d387 d10c5e3 6e50b93 d10c5e3 59afb84 6e50b93 d10c5e3 43feca4 d10c5e3 417a076 d10c5e3 43feca4 d10c5e3 9d1687b 9ef0c39 653cee7 9ef0c39 653cee7 9d1687b 8824bce 9ef0c39 8824bce 9ef0c39 d10c5e3 9ef0c39 9d1687b 9ef0c39 dac5a69 e5c2b2d 9d1687b d10c5e3 b07d516 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import gradio as gr
import spaces
from styletts2 import tts
import re
import numpy as np
from scipy.io.wavfile import write
import nltk
from VoPho.engine import Phonemizer
import torch
INTRO = """
<style>
.TitleContainer {
background-color: #ffff;
margin-bottom: 0rem;
margin-left: auto;
margin-right: auto;
width: 40%;
height: 30%;
border-radius: 10rem;
border: 0.5vw solid #ff593e;
text-align: center;
display: flex;
justify-content: center;
transition: .6s;
}
.TitleContainer:hover {
transform: scale(1.05);
}
.VokanLogo {
margin: auto;
display: block;
}
</style>
<div class="TitleContainer">
<img src="https://huggingface.co/spaces/ShoukanLabs/Vokan/resolve/main/Vokan.gif" class="VokanLogo">
</div>
<p align="center", style="font-size: 1vw; font-weight: bold; color: #ff593e;">A StyleTTS2 fine-tune, designed for expressiveness.</p>
<hr>
"""
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
examples = [
["./Examples/David Attenborough.wav",
"An understanding of the natural world is a source of not only great curiosity, but great fulfilment.",
1, 0.2, 0.5, 1, 200],
["./Examples/Linus Tech Tips.wav",
"sometimes I get so in the zone while building a computer it's like an out of body experience.",
1, 0.2, 0.8, 2, 200],
["./Examples/Melina.wav",
"<en>If you intend to claim the Frenzied Flame, I ask that you cease. It is not to be meddled with. It is chaos, "
"devouring life and thought unending. However ruined this world has become, "
"however mired in torment and despair, life endures.</en>",
0.95, 0.2, 0.5, 2, 200],
["./Examples/Patrick Bateman.wav",
"My Pain Is Constant And Sharp, And I Do Not Wish For A Better World For Anyone.",
1, 0.1, 0.3, 2, 200],
["./Examples/Furina.ogg",
"That's more like it! As expected, my dazzling side comes through in any situation.",
1, 0.2, 0.8, 2, 200]
]
theme = gr.themes.Soft(
primary_hue=gr.themes.Color(c100="#ffd7d1", c200="#ff593e", c300="#ff593e", c400="#ff593e", c50="#fff0f0",
c500="#ff593e", c600="#ea580c", c700="#c2410c", c800="#9a3412", c900="#7c2d12",
c950="#6c2e12"),
secondary_hue="orange",
radius_size=gr.themes.Size(lg="20px", md="8px", sm="6px", xl="30px", xs="4px", xxl="40px", xxs="2px"),
font=[gr.themes.GoogleFont('M PLUS Rounded 1c'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
).set(
block_background_fill='*neutral_50'
)
def split_and_recombine_text(text, desired_length=200, max_length=300):
"""Split text it into chunks of a desired length trying to keep sentences intact."""
# normalize text, remove redundant whitespace and convert non-ascii quotes to ascii
text = re.sub(r'\n\n+', '\n', text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'[“”]', '"', text)
rv = []
in_quote = False
current = ""
split_pos = []
pos = -1
end_pos = len(text) - 1
def seek(delta):
nonlocal pos, in_quote, current
is_neg = delta < 0
for _ in range(abs(delta)):
if is_neg:
pos -= 1
current = current[:-1]
else:
pos += 1
current += text[pos]
if text[pos] == '"':
in_quote = not in_quote
return text[pos]
def peek(delta):
p = pos + delta
return text[p] if p < end_pos and p >= 0 else ""
def commit():
nonlocal rv, current, split_pos
rv.append(current)
current = ""
split_pos = []
while pos < end_pos:
c = seek(1)
# do we need to force a split?
if len(current) >= max_length:
if len(split_pos) > 0 and len(current) > (desired_length / 2):
# we have at least one sentence and we are over half the desired length, seek back to the last split
d = pos - split_pos[-1]
seek(-d)
else:
# no full sentences, seek back until we are not in the middle of a word and split there
while c not in '!?.\n ' and pos > 0 and len(current) > desired_length:
c = seek(-1)
commit()
# check for sentence boundaries
elif not in_quote and (c in '!?\n' or (c == '.' and peek(1) in '\n ')):
# seek forward if we have consecutive boundary markers but still within the max length
while pos < len(text) - 1 and len(current) < max_length and peek(1) in '!?.':
c = seek(1)
split_pos.append(pos)
if len(current) >= desired_length:
commit()
# treat end of quote as a boundary if its followed by a space or newline
elif in_quote and peek(1) == '"' and peek(2) in '\n ':
seek(2)
split_pos.append(pos)
rv.append(current)
# clean up, remove lines with only whitespace or punctuation
rv = [s.strip() for s in rv]
rv = [s for s in rv if len(s) > 0 and not re.match(r'^[\s\.,;:!?]*$', s)]
return rv
engine = Phonemizer()
def text_to_phonemes(text):
text = text.strip()
print("Text before phonemization: ", text)
ps = engine.phonemize(text)
print("Text after phonemization: ", ps)
return ps
@spaces.GPU
def generate(audio_path, ins, speed, alpha, beta, embedding, steps=200):
ref_s = other_tts.compute_style(audio_path)
print(ref_s.size())
s_prev = None
texts = split_and_recombine_text(ins)
audio = np.array([])
for i in texts:
i = text_to_phonemes(i)
synthaud, s_prev = other_tts.long_inference_segment(i, diffusion_steps=steps,
alpha=alpha, beta=beta, is_phonemes=True,
embedding_scale=embedding, prev_s=s_prev, ref_s=ref_s,
speed=speed, t=0.8)
# S-Curve
np_log_99 = np.log(99)
def s_curve(p):
assert 0 <= p and p <= 1, p
if p == 0 or p == 1:
return p
p = (2*p - 1) * np_log_99
s = 1 / (1 + np.exp(-p))
s = (s - 0.01) * 50 / 49
assert 0 <= s and s <= 1, s
return s
# Post-Processing
thresh = np.percentile(np.abs(synthaud), 95)
CUT_SAMPLES = 20000 # max samples to cut, in practice only 4-6k are actually cut
lead_percent = 0.008
trail_percent = 0.0085
# Leading artefact removal
left = CUT_SAMPLES + int(len(synthaud) * lead_percent)
for j in range(left):
if abs(synthaud[j]) > thresh:
left = j
break
left = max(0, min(left - int(len(synthaud) * lead_percent), CUT_SAMPLES))
synthaud[:left] = 0
for k in range(int(len(synthaud) * lead_percent)):
s = s_curve(k / int(len(synthaud) * lead_percent))
synthaud[k + left] *= s
# Trailing artefact removal
right = len(synthaud) - CUT_SAMPLES - int(len(synthaud) * trail_percent)
for j in range(len(synthaud) - 1, right, -1):
if abs(synthaud[j]) > thresh:
right = j
break
right = min(len(synthaud), max(right + int(len(synthaud) * trail_percent), len(synthaud) - CUT_SAMPLES))
synthaud[right:] = 0
for k in range(int(len(synthaud) * trail_percent)):
s = s_curve(k / int(len(synthaud) * trail_percent))
synthaud[right - int(len(synthaud) * trail_percent) + k] *= (1 - s)
audio = np.concatenate((audio, synthaud))
scaled = np.int16(audio / np.max(np.abs(audio)) * 32767)
return 24000, scaled
other_tts = tts.StyleTTS2(model_checkpoint_path='./epoch_2nd_00012.pth', config_path="models/config_ft.yml")
if torch.cuda.is_available():
other_tts.device = "cuda"
else:
other_tts.device = "cpu"
with gr.Blocks(theme=theme, js=js_func) as clone:
gr.HTML(INTRO)
with gr.Row():
with gr.Column(scale=1):
inp = gr.Textbox(label="Text", info="What do you want Vokan to say? | Longform generation may produce artifacts in between sentences", interactive=True)
voice = gr.Audio(label="Voice", interactive=True, type='filepath', max_length=1000,
waveform_options={'waveform_progress_color': '#FF593E'})
steps = gr.Slider(minimum=3, maximum=500, value=20, step=1, label="Diffusion Steps",
info="Higher produces better results typically", interactive=True)
embscale = gr.Slider(minimum=0.1, maximum=5, value=2, step=0.1, label="Embedding Scale",
info="Defaults to 2 | high scales may produce unexpected results | Higher scales produce more emotion guided reults", interactive=True)
alpha = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Alpha", info="Defaults to 0.3 | Lower = More similar in sound to speaker",
interactive=True)
beta = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Beta", info="Defaults to 0.7 | Lower = More similar prosody at cost of stability",
interactive=True)
speed = gr.Slider(minimum=0.5, maximum=1.5, value=1, step=0.1, label="Speed of speech",
info="Defaults to 1", interactive=True)
with gr.Column(scale=1):
clbtn = gr.Button("Synthesize", variant="primary")
claudio = gr.Audio(interactive=False, label="Synthesized Audio",
waveform_options={'waveform_progress_color': '#FF593E'})
clbtn.click(generate, inputs=[voice, inp, speed, alpha, beta, embscale, steps], outputs=[claudio],
concurrency_limit=15)
gr.Examples(examples=examples,
inputs=[voice, inp, speed, alpha, beta, embscale, steps],
outputs=[claudio],
fn=generate,
cache_examples=True,)
if __name__ == "__main__":
# demo.queue(api_open=False, max_size=15).launch(show_api=False)
clone.queue(api_open=False, max_size=15).launch(show_api=False) |