# Commented out IPython magic to ensure Python compatibility. # %%shell # pip install -q langchain_community langchain_huggingface faiss-cpu gradio openai google-generativeai langchain-google-genai torch torchvision torchaudio youtokentome pypdf accelerate # Commented out IPython magic to ensure Python compatibility. # %%capture # %%shell # # # Install the custom version of NeMo by AI4Bharat # wget https://indic-asr-public.objectstore.e2enetworks.net/ai4b_nemo.zip # # unzip -q /content/ai4b_nemo.zip && cd NeMo # bash reinstall.sh # # cd .. # import os import subprocess import sys def install_with_subprocess(args): subprocess.run(args, check=True) def remove_tensorflow(): subprocess.run([sys.executable, '-m', 'pip', 'uninstall', '-y', 'tensorflow'], check=True) print("CURRENT WORKING DIRECTORY:",os.getcwd()) print("CURRENT WORKING DIRECTORY LIST:",os.listdir(os.getcwd())) setup_flag = 'setup_complete.flag' if not os.path.exists(setup_flag): remove_tensorflow() os.system('wget https://indic-asr-public.objectstore.e2enetworks.net/ai4b_nemo.zip') os.system('unzip -q ai4b_nemo.zip') os.chdir('NeMo') install_with_subprocess([sys.executable, '-m', 'pip', 'install', '-e', '.']) os.system('bash reinstall.sh') os.chdir('..') os.system('git clone -q https://github.com/VarunGumma/IndicTransTokenizer') os.chdir('IndicTransTokenizer') install_with_subprocess([sys.executable,'-m','pip','install','-q','--editable','./']) os.chdir('..') subprocess.run(['apt-get', 'update'], check=True) subprocess.run(['apt-get', 'install', '-y', 'libsndfile1-dev', 'ffmpeg'], check=True) os.system('git clone https://github.com/gokulkarthik/TTS') os.chdir('TTS') install_with_subprocess(['pip3', 'install', '-e', '.[all]']) install_with_subprocess(['pip3', 'install', '-r', 'requirements.txt']) os.chdir('..') with open(setup_flag, 'w') as f: f.write('Setup complete') os.execv(sys.executable, ['python'] + sys.argv) # Commented out IPython magic to ensure Python compatibility. # %%capture # %%shell # # git clone -q https://github.com/VarunGumma/IndicTransTokenizer # cd IndicTransTokenizer # pip install -q --editable ./ # cd .. # # Commented out IPython magic to ensure Python compatibility. # %%capture # %%shell # # apt-get install libsndfile1-dev ffmpeg # git clone https://github.com/gokulkarthik/TTS # cd TTS # pip3 install -e .[all] # pip3 install -r requirements.txt # cd .. # """## **Restart session** """ # Commented out IPython magic to ensure Python compatibility. # %%capture # !pip install gradio # Commented out IPython magic to ensure Python compatibility. # %%capture # # # INFO: If you're unable to import these libraries, just rerun this cell again. # import gradio as gr from torch import cuda, inference_mode import nemo.collections.asr as nemo_asr from IndicTransTokenizer import IndicProcessor from transformers import AutoModelForSeq2SeqLM, AutoTokenizer DEVICE = "cuda" if cuda.is_available() else "cpu" print(f"Using device: {DEVICE}") import os from langchain_community.vectorstores import FAISS from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.document_loaders import PyPDFLoader """### Load and convert PDF data into vectorDB""" pm_kisan_doc = "PM-KISANOperationalGuidelines(English).pdf" from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( chunk_size=600, chunk_overlap=100 ) loader = PyPDFLoader(pm_kisan_doc) pages = loader.load_and_split(text_splitter=text_splitter) pages_chunks = [page.page_content for page in pages] print(f"Generated {len(pages_chunks)} chunks of {pm_kisan_doc}") pages_chunks[8] embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") faiss = FAISS.from_texts(pages_chunks, embeddings) """### Querying the vectorDB""" # Test query result = faiss.similarity_search("what are the benefits of PM kisan yojna", k=3) # This returns the most relevant doc similar to the query print(result[0].page_content) Result_with_score = faiss.similarity_search_with_score("what are the benefits of PM kisan yojna", k=3) Result_with_score[0] gemini_api_key = os.getenv('GEMINI_API_KEY') import google.generativeai as genai def get_gemini_output(prompt, temperature=0.6): genai.configure(api_key= gemini_api_key) model = genai.GenerativeModel(model_name='gemini-pro') answer = model.generate_content(prompt, generation_config=genai.types.GenerationConfig( temperature=0.6)) return answer.text """## Build an end-to-end RAG powered Voice Assistant """ ip = IndicProcessor(inference=True) # Commented out IPython magic to ensure Python compatibility. # # %%capture en2indic_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) en2indic_model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) # Commented out IPython magic to ensure Python compatibility. # # %%capture indic2en_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-indic-en-dist-200M", trust_remote_code=True) indic2en_model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-indic-en-dist-200M", trust_remote_code=True) model_tokenizer_config = { "en2indic": { "tokenizer": en2indic_tokenizer, "model": en2indic_model, }, "indic2en": { "tokenizer": indic2en_tokenizer, "model": indic2en_model, } } def indic_translate(src_lang: str, tgt_lang: str, sents_to_translate: list): lang_map = { "punjabi": "pan_Guru", "bengali": "ben_Beng", "malayalam": "mal_Mlym", "marathi": "mar_Deva", "tamil": "tam_Taml", "gujarati": "guj_Gujr", "telugu": "tel_Telu", "hindi": "hin_Deva", "kannada": "kan_Knda", "odia": "ory_Orya", "english": "eng_Latn" } src_lang = lang_map[src_lang] tgt_lang = lang_map[tgt_lang] if src_lang == "eng_Latn": tokenizer = model_tokenizer_config["en2indic"]["tokenizer"] model = model_tokenizer_config["en2indic"]["model"] print(f"Using en2indic, src_lang: {src_lang}, tgt_lang: {tgt_lang}") else: tokenizer = model_tokenizer_config["indic2en"]["tokenizer"] model = model_tokenizer_config["indic2en"]["model"] print(f"Using indic2en, src_lang: {src_lang}, tgt_lang: {tgt_lang}") batch = ip.preprocess_batch(sents_to_translate, src_lang=src_lang, tgt_lang=tgt_lang, show_progress_bar=False) batch = tokenizer(batch, padding="longest", truncation=True, max_length=256, return_tensors="pt") with inference_mode(): print("Generating...") outputs = model.generate(**batch, num_beams=5, num_return_sequences=1, max_length=256) with tokenizer.as_target_tokenizer(): outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True) if tgt_lang != "en_Latn": print(f"Postprocessing for {tgt_lang}") outputs = ip.postprocess_batch(outputs, lang=tgt_lang) return outputs def download_ai4b_tts_model(lang: str): lang_map = { "odia": "or", "hindi": "hi", "tamil": "ta", "telugu": "te", "punjabi": "pa", "kannada": "kn", "bengali": "bn", "marathi": "mr", "gujarati": "gu", "malayalam": "ml", } selected_lang = lang_map[lang] download_path = f"/{selected_lang}.zip" if os.path.exists(download_path): print(f"IndicTTS Model for {lang} already exists.") def run_tts(text, tts_lang): lang_map = { "odia": "or", "hindi": "hi", "tamil": "ta", "telugu": "te", "punjabi": "pa", "kannada": "kn", "bengali": "bn", "marathi": "mr", "gujarati": "gu", "malayalam": "ml", } download_ai4b_tts_model(lang=tts_lang) tts_lang = lang_map[tts_lang] print(f"Lang code: {tts_lang}") tts_command = f'python3 -m TTS.bin.synthesize --text "{text}" \ --model_path /models/v1/{tts_lang}/fastpitch/best_model.pth \ --config_path /models/v1/{tts_lang}/fastpitch/config.json \ --vocoder_path /models/v1/{tts_lang}/hifigan/best_model.pth \ --vocoder_config_path /models/v1/{tts_lang}/hifigan/config.json \ --speakers_file_path /models/v1/{tts_lang}/fastpitch/speakers.pth \ --out_path /tts_output.wav \ --speaker_idx male' if DEVICE == "cuda": tts_command += " --use_cuda True" print(f"Running IndicTTS on GPU") else: print(f"Running IndicTTS on CPU") os.system(tts_command) def download_ai4b_asr_model(lang: str): available_langs = { "odia": "or", "hindi": "hi", "tamil": "ta", "telugu": "te", "punjabi": "pa", "kannada": "kn", "bengali": "bn", "marathi": "mr", "gujarati": "gu", "malayalam": "ml", } os.makedirs('asr_models', exist_ok=True) # download_path = f"/asr_models/ai4b_indicConformer_{available_langs[lang]}.nemo" download_dir = "asr_models" download_path = os.path.join(download_dir,f"ai4b_indicConformer_{available_langs[lang]}.nemo") print(f"Downloaded ASR model path: {download_path}") if os.path.exists(download_path): print(f"Model for {lang} already exists.") elif lang not in available_langs: raise ValueError(f"Invalid language code: {lang}") else: url = f"https://objectstore.e2enetworks.net/indic-asr-public/indicConformer/ai4b_indicConformer_{available_langs[lang]}.nemo" try: result= subprocess.run(['wget', url, '-O', download_path], check=True, capture_output=True, text=True) print(result.stdout) except subprocess.CallProcessError as e: print(f"Error occured: {e.stderr}") raise return download_path os.makedirs('asr_models', exist_ok=True) def ensure_numpy_version(): try: import numpy as np required_version = '1.23' if np.__version__ != required_version: subprocess.run(['pip', 'install', f'numpy=={required_version}'], check=True) except ImportError: subprocess.run(['pip', 'install', 'numpy==1.23.0'], check=True) ensure_numpy_version() subprocess.run(['pip', 'install', 'numba==0.60.0'], check=True) import librosa def preprocess_audio(audio_path): audio, sr = librosa.load(audio_path, sr=None, mono=True) return audio, sr def transcribe(audio: str, lang: str): audio, sr = preprocess_audio(audio) lang_map = { "odia": "or", "hindi": "hi", "tamil": "ta", "telugu": "te", "punjabi": "pa", "kannada": "kn", "bengali": "bn", "marathi": "mr", "gujarati": "gu", "malayalam": "ml", } download_path = download_ai4b_asr_model(lang=lang) asr_model = nemo_asr.models.ASRModel.restore_from( download_path, map_location=DEVICE ) transcription = asr_model.transcribe(audio, batch_size=1, language_id=lang_map[lang])[0][0] print(f"Transcription: {transcription}") return transcription def query_vector_db(query): # Combine the top-3 similar documents from the vectorDB result = " ".join([result.page_content for result in faiss.similarity_search(query, k=3)]) return result from langchain_core.prompts import PromptTemplate def process_user_query(user_query, retrieved_doc): prompt_template = PromptTemplate.from_template( "You are a chatbot , which provides information to user based on their queries, \ the user asks: {user_query}, The information from the related query is: {retrieved_doc}. \ Now give the output based on the query and relevant information that i provided, written in a structured, well-formatted and concise way. \ The length of the output should be no more than 70 words, must be in 5 lines." ) prompt = prompt_template.format(user_query=user_query, retrieved_doc=retrieved_doc) processed_doc = get_gemini_output(prompt) print(processed_doc) return processed_doc #Context awareness from collections import deque class ContextManger: def __init__(self,max_history=7): self.history = deque(maxlen=max_history) def add_interaction(self,query,response): self.history.append((query,response)) def get_context(self): return list(self.history) context_manager = ContextManger() # context = context_manager.get_context() # contexulized_query = f"Previous context: {context} \n\nCurrent query: {indic_to_en}" import traceback def process_gradio_input(audio, user_lang): try: # Use IndicASR to transcribe the input audio print(f"Transcribing...") query_transcription = transcribe(audio, lang=user_lang) # Convert the Indic text from transcription to English, so that GPT-3.5 can process it print(f"Translating indic to en..") indic_to_en = indic_translate(src_lang=user_lang, tgt_lang="english", sents_to_translate=[query_transcription])[0] # context_manager = ContextManager() context = context_manager.get_context() contexulized_query = f"Previous context: {context} \n\nCurrent query: {indic_to_en}" # Query the Vector DB to get the relevant document from the query print(f"Querying vector db") retrieved_doc = query_vector_db(contexulized_query) # Extract relevant information from the retrieved document print(f"Processing user query") processed_doc = process_user_query(user_query=contexulized_query, retrieved_doc=retrieved_doc) context_manager.add_interaction(indic_to_en, processed_doc) # Break the document into chunks for faster batch processing print(f"Breaking document into chunks..") processed_doc_chunks = processed_doc.strip().split(". ") processed_doc_chunks = [f"{chunk}." for chunk in processed_doc_chunks if chunk != ""] # Translate the the extracted information back to Indic language print(f"Translating en to indic..") en_to_indic_chunks = indic_translate(src_lang="english", tgt_lang=user_lang, sents_to_translate=processed_doc_chunks) en_to_indic_doc = " ".join(en_to_indic_chunks) print(f"en_to_indic_doc: {en_to_indic_doc}") # Run IndicTTS to generate audio print(f"Running TTS to generate audio..") run_tts(text=en_to_indic_doc, tts_lang=user_lang) print("Finished running TTS") audio_outfile_path = "tts_output.wav" return en_to_indic_doc, audio_outfile_path except Exception as e: error_message = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" print(error_message) return error_message, None def launch_gradio_app(show_log=False): languages = ["hindi", "odia", "tamil", "telugu", "punjabi", "kannada", "bengali", "marathi", "gujarati", "malayalam"] iface = gr.Interface( fn=process_gradio_input, inputs=[ gr.Audio(sources=['upload', 'microphone'], type="filepath", show_download_button=True), # Input audio gr.Dropdown(languages, label="Language", value="hindi"), # Language selection ], outputs=["text", "audio"], allow_flagging="never", title="Farmer's Voice Assistant 🧑‍🌾 Powered by AI4Bharat Tech", description="Know about latest farming schemes, this system is powered by tools from AI4Bharat, like IndicASR, IndicTTS and IndicTrans", ) iface.launch(debug=show_log) launch_gradio_app(show_log=True)