Siddartha10
commited on
Commit
•
75c20ff
1
Parent(s):
59c328a
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from typing import List, Tuple
|
4 |
+
import json
|
5 |
+
import uvicorn
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
load_dotenv()
|
8 |
+
from fastapi import FastAPI
|
9 |
+
from langchain.agents import AgentExecutor
|
10 |
+
from langchain.agents.format_scratchpad import format_to_openai_function_messages
|
11 |
+
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
12 |
+
from langchain.callbacks import FinalStreamingStdOutCallbackHandler
|
13 |
+
from langchain.chat_models import ChatOpenAI
|
14 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
15 |
+
from langchain.pydantic_v1 import BaseModel, Field
|
16 |
+
from langchain.schema.messages import AIMessage, HumanMessage
|
17 |
+
from langchain.tools.render import format_tool_to_openai_function
|
18 |
+
from langchain_community.utilities.google_serper import GoogleSerperAPIWrapper
|
19 |
+
from langchain_core.runnables import ConfigurableField
|
20 |
+
from langchain_core.tools import Tool
|
21 |
+
from langserve import add_routes
|
22 |
+
from langchain.prompts import PromptTemplate
|
23 |
+
import requests
|
24 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
25 |
+
from langchain.vectorstores import Qdrant
|
26 |
+
from langchain.chains import RetrievalQA
|
27 |
+
from langchain.agents import Tool, Agent, AgentType
|
28 |
+
from langchain.agents import AgentExecutor
|
29 |
+
from langchain_core.tools import Tool
|
30 |
+
from langchain_openai import ChatOpenAI
|
31 |
+
from langchain_openai import AzureChatOpenAI
|
32 |
+
from langchain_community.document_loaders import JSONLoader
|
33 |
+
|
34 |
+
embeddings = OpenAIEmbeddings()
|
35 |
+
llm_1 = AzureChatOpenAI(openai_api_version=os.environ.get("AZURE_OPENAI_VERSION", "2023-07-01-preview"),
|
36 |
+
azure_deployment=os.environ.get("AZURE_OPENAI_DEPLOYMENT", "gpt4chat"),
|
37 |
+
azure_endpoint=os.environ.get("AZURE_OPENAI_ENDPOINT", "https://gpt-4-trails.openai.azure.com/"),
|
38 |
+
api_key=os.environ.get("AZURE_OPENAI_KEY"))
|
39 |
+
|
40 |
+
llm = ChatOpenAI(temperature=0.2,
|
41 |
+
model="gpt-3.5-turbo-0125",
|
42 |
+
streaming=True,
|
43 |
+
callbacks=[FinalStreamingStdOutCallbackHandler()]).configurable_fields(
|
44 |
+
temperature=ConfigurableField(
|
45 |
+
id="llm_temperature",
|
46 |
+
name="LLM Temperature",
|
47 |
+
description="The temperature of the LLM"))
|
48 |
+
assistant_system_message = """You are a helpful assistant. \
|
49 |
+
Use tools (only if necessary) to best answer the users questions."""
|
50 |
+
|
51 |
+
prompt = ChatPromptTemplate.from_messages(
|
52 |
+
[
|
53 |
+
("system", assistant_system_message),
|
54 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
55 |
+
("user", "{input}"),
|
56 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
57 |
+
]
|
58 |
+
)
|
59 |
+
|
60 |
+
# Define the API call function for Ares API
|
61 |
+
|
62 |
+
def api_call(text):
|
63 |
+
url = "https://api-ares.traversaal.ai/live/predict"
|
64 |
+
|
65 |
+
payload = { "query": [text]}
|
66 |
+
headers = {
|
67 |
+
"x-api-key": "ares_a0866ad7d71d2e895c5e05dce656704a9e29ad37860912ad6a45a4e3e6c399b5",
|
68 |
+
"content-type": "application/json"
|
69 |
+
}
|
70 |
+
|
71 |
+
response = requests.post(url, json=payload, headers=headers)
|
72 |
+
|
73 |
+
# here we will use the llm to summarize the response received from the ares api
|
74 |
+
response_data = response.json()
|
75 |
+
#print(response_data)
|
76 |
+
try:
|
77 |
+
response_text = response_data['data']['response_text']
|
78 |
+
web_urls = response_data['data']['web_url']
|
79 |
+
# Continue processing the data...
|
80 |
+
except KeyError:
|
81 |
+
print("Error: Unexpected response from the API. Please try again or contact the api owner.")
|
82 |
+
# Optionally, you can log the error or perform other error handling actions.
|
83 |
+
|
84 |
+
|
85 |
+
if len(response_text) > 10000:
|
86 |
+
response_text = response_text[:8000]
|
87 |
+
prompt = f"Summarize the following text in 500-100 0 words and jsut summarize what you see and do not add anythhing else: {response_text}"
|
88 |
+
summary = llm_1.invoke(prompt)
|
89 |
+
print(summary)
|
90 |
+
else:
|
91 |
+
summary = response_text
|
92 |
+
|
93 |
+
result = "{} My list is: {}".format(response_text, web_urls)
|
94 |
+
|
95 |
+
# Convert the result to a string
|
96 |
+
result_str = str(result)
|
97 |
+
|
98 |
+
return result_str
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
def metadata_func(record: str, metadata: dict) -> dict:
|
103 |
+
lines = record.split('\n')
|
104 |
+
locality_line = lines[10]
|
105 |
+
price_range_line = lines[12]
|
106 |
+
locality = locality_line.split(': ')[1]
|
107 |
+
price_range = price_range_line.split(': ')[1]
|
108 |
+
metadata["location"] = locality
|
109 |
+
metadata["price_range"] = price_range
|
110 |
+
|
111 |
+
return metadata
|
112 |
+
|
113 |
+
# Instantiate the JSONLoader with the metadata_func
|
114 |
+
jq_schema = '.parser[] | to_entries | map("\(.key): \(.value)") | join("\n")'
|
115 |
+
loader = JSONLoader(
|
116 |
+
jq_schema=jq_schema,
|
117 |
+
file_path='data.json',
|
118 |
+
metadata_func=metadata_func,
|
119 |
+
)
|
120 |
+
|
121 |
+
# Load the JSON file and extract metadata
|
122 |
+
documents = loader.load()
|
123 |
+
|
124 |
+
|
125 |
+
from langchain.vectorstores import FAISS
|
126 |
+
def get_vectorstore(text_chunks):
|
127 |
+
# Check if the FAISS index file already exists
|
128 |
+
if os.path.exists("faiss_index"):
|
129 |
+
# Load the existing FAISS index
|
130 |
+
vectorstore = FAISS.load_local("faiss_index")
|
131 |
+
print("Loaded existing FAISS index.")
|
132 |
+
else:
|
133 |
+
# Create a new FAISS index
|
134 |
+
embeddings = OpenAIEmbeddings()
|
135 |
+
vectorstore = FAISS.from_documents(documents=text_chunks, embedding=embeddings)
|
136 |
+
# Save the new FAISS index locally
|
137 |
+
vectorstore.save_local("faiss_index")
|
138 |
+
print("Created and saved new FAISS index.")
|
139 |
+
return vectorstore
|
140 |
+
|
141 |
+
#docs = new_db.similarity_search(query)
|
142 |
+
|
143 |
+
vector = get_vectorstore(documents)
|
144 |
+
|
145 |
+
template = """
|
146 |
+
|
147 |
+
context:- I have low budget what is the best hotel in Instanbul?
|
148 |
+
anser:- The other hotels in instanbul are costly and are not in your budget. so the best hotel in instanbul for you is hotel is xyz."
|
149 |
+
|
150 |
+
Don’t give information not mentioned in the CONTEXT INFORMATION.
|
151 |
+
The system should take into account various factors such as location, amenities, user reviews, and other relevant criteria to
|
152 |
+
generate informative and personalized explanations.
|
153 |
+
{context}
|
154 |
+
Question: {question}
|
155 |
+
Answer:"""
|
156 |
+
|
157 |
+
def search():
|
158 |
+
#llm = ChatOpenAI(model="gpt-3.5-turbo-1106", temperature=0)
|
159 |
+
vector = vector
|
160 |
+
prompt = PromptTemplate(template=template, input_variables=["context","question"])
|
161 |
+
chain_type_kwargs = {"prompt": prompt}
|
162 |
+
return RetrievalQA.from_chain_type(
|
163 |
+
llm=llm,
|
164 |
+
chain_type="stuff",
|
165 |
+
retriever=vector.as_retriever(),
|
166 |
+
chain_type_kwargs=chain_type_kwargs,
|
167 |
+
)
|
168 |
+
|
169 |
+
# Initialize LangChain tools
|
170 |
+
|
171 |
+
|
172 |
+
api_tool = Tool(name="Ares_API",
|
173 |
+
func=api_call,
|
174 |
+
description="Integration with Traversaal AI Ares API for real-time internet searches."
|
175 |
+
)
|
176 |
+
|
177 |
+
chain_rag_tool = Tool(name="RAG_Chain",
|
178 |
+
func=search,
|
179 |
+
description="RAG chain for question answering."
|
180 |
+
)
|
181 |
+
|
182 |
+
app = FastAPI(
|
183 |
+
title='Example',
|
184 |
+
)
|
185 |
+
|
186 |
+
tools = [chain_rag_tool, api_tool]
|
187 |
+
llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])
|
188 |
+
|
189 |
+
|
190 |
+
def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
191 |
+
buffer = []
|
192 |
+
for human, ai in chat_history:
|
193 |
+
buffer.append(HumanMessage(content=human))
|
194 |
+
buffer.append(AIMessage(content=ai))
|
195 |
+
return buffer
|
196 |
+
|
197 |
+
|
198 |
+
agent = (
|
199 |
+
{
|
200 |
+
"input": lambda x: x["input"],
|
201 |
+
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
|
202 |
+
"agent_scratchpad": lambda x: format_to_openai_function_messages(
|
203 |
+
x["intermediate_steps"]
|
204 |
+
),
|
205 |
+
}
|
206 |
+
| prompt
|
207 |
+
| llm_with_tools
|
208 |
+
| OpenAIFunctionsAgentOutputParser()
|
209 |
+
)
|
210 |
+
|
211 |
+
|
212 |
+
class AgentInput(BaseModel):
|
213 |
+
input: str
|
214 |
+
chat_history: List[Tuple[str, str]] = Field(
|
215 |
+
..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}}
|
216 |
+
)
|
217 |
+
|
218 |
+
|
219 |
+
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True).with_types(
|
220 |
+
input_type=AgentInput
|
221 |
+
)
|
222 |
+
|
223 |
+
|
224 |
+
def get_response(user_input):
|
225 |
+
response = agent_executor.invoke({"input":user_input, "chat_history": _format_chat_history([])})
|
226 |
+
return response
|
227 |
+
|
228 |
+
|
229 |
+
def main():
|
230 |
+
st.title("Travle Assistant Chatbot")
|
231 |
+
st.write("Welcome to the Hotel Assistant Chatbot!")
|
232 |
+
user_input = st.text_input("User Input:")
|
233 |
+
|
234 |
+
if st.button("Submit"):
|
235 |
+
response = get_response(user_input)
|
236 |
+
st.text_area("Chatbot Response:", value=response)
|
237 |
+
|
238 |
+
if st.button("Exit"):
|
239 |
+
st.stop()
|
240 |
+
|
241 |
+
if __name__ == "__main__":
|
242 |
+
main()
|