File size: 6,122 Bytes
b5a6313 e339223 b5a6313 6b8ad12 b5a6313 e339223 ec47c3f e339223 ec47c3f 3a7ed92 ec47c3f b5a6313 e339223 ec47c3f b7391bd ec47c3f e339223 b5a6313 ec47c3f b5a6313 e339223 ec47c3f b5a6313 e339223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
import numpy as np
import torch
from PIL import Image
from diffusers import StableDiffusionPipeline
from transformers import pipeline, set_seed
import random
import re
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id).to('cpu')
gpt2_pipe = pipeline('text-generation', model='Gustavosta/MagicPrompt-Stable-Diffusion', tokenizer='gpt2')
gpt2_pipe2 = pipeline('text-generation', model='succinctly/text2image-prompt-generator')
def infer1(starting_text):
seed = random.randint(100, 1000000)
set_seed(seed)
if starting_text == "":
starting_text: str = re.sub(r"[,:\-β.!;?_]", '', starting_text)
response = gpt2_pipe(starting_text, max_length=(len(starting_text) + random.randint(60, 90)), num_return_sequences=4)
response_list = []
for x in response:
resp = x['generated_text'].strip()
if resp != starting_text and len(resp) > (len(starting_text) + 4) and resp.endswith((":", "-", "β")) is False:
response_list.append(resp+'\n')
response_end = "\n".join(response_list)
response_end = re.sub('[^ ]+\.[^ ]+','', response_end)
response_end = response_end.replace("<", "").replace(">", "")
if response_end != "":
return response_end
def infer2(starting_text):
for count in range(6):
seed = random.randint(100, 1000000)
set_seed(seed)
# If the text field is empty
if starting_text == "":
starting_text: str = line[random.randrange(0, len(line))].replace("\n", "").lower().capitalize()
starting_text: str = re.sub(r"[,:\-β.!;?_]", '', starting_text)
print(starting_text)
response = gpt2_pipe2(starting_text, max_length=random.randint(60, 90), num_return_sequences=8)
response_list = []
for x in response:
resp = x['generated_text'].strip()
if resp != starting_text and len(resp) > (len(starting_text) + 4) and resp.endswith((":", "-", "β")) is False:
response_list.append(resp)
response_end = "\n".join(response_list)
response_end = re.sub('[^ ]+\.[^ ]+','', response_end)
response_end = response_end.replace("<", "").replace(">", "")
if response_end != "":
return response_end
if count == 5:
return response_end
def infer3(prompt, negative, steps, scale, seed):
generator = torch.Generator(device='cpu').manual_seed(seed)
img = pipe(
prompt,
height=512,
width=512,
num_inference_steps=steps,
guidance_scale=scale,
negative_prompt = negative,
generator=generator,
).images
return img
block = gr.Blocks()
with block:
with gr.Group():
with gr.Box():
gr.Markdown(
"""
Model: Gustavosta/MagicPrompt-Stable-Diffusion
"""
)
with gr.Row() as row:
with gr.Column():
txt = gr.Textbox(lines=1, label="Initial Text", placeholder="English Text here")
gpt_btn = gr.Button("Generate prompt").style(
margin=False,
rounded=(False, True, True, False),
)
with gr.Column():
out = gr.Textbox(lines=4, label="Generated Prompts")
with gr.Box():
gr.Markdown(
"""
Model: succinctly/text2image-prompt-generator
"""
)
with gr.Row() as row:
with gr.Column():
txt2 = gr.Textbox(lines=1, label="Initial Text", placeholder="English Text here")
gpt_btn2 = gr.Button("Generate prompt").style(
margin=False,
rounded=(False, True, True, False),
)
with gr.Column():
out2 = gr.Textbox(lines=4, label="Generated Prompts")
with gr.Box():
gr.Markdown(
"""
Model: stable diffusion v1.5
"""
)
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
with gr.Column():
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
negative = gr.Textbox(
label="Enter your negative prompt",
show_label=False,
placeholder="Enter a negative prompt",
elem_id="negative-prompt-text-input",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),container=False,
)
btn = gr.Button("Generate image").style(
margin=False,
rounded=(False, True, True, False),
)
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(columns=(1, 2), height="auto")
with gr.Row(elem_id="advanced-options"):
samples = gr.Slider(label="Images", minimum=1, maximum=1, value=1, step=1, interactive=False)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=12, step=1, interactive=True)
scale = gr.Slider(label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1, interactive=True)
seed = gr.Slider(label="Random seed",minimum=0,maximum=2147483647,step=1,randomize=True,interactive=True)
gpt_btn.click(infer1,inputs=txt,outputs=out)
gpt_btn2.click(infer2,inputs=txt2,outputs=out2)
btn.click(infer3, inputs=[text, negative, steps, scale, seed], outputs=[gallery])
block.launch(show_api=False,enable_queue=True, debug=True) |