import gradio as gr import numpy as np import torch from PIL import Image from diffusers import StableDiffusionPipeline from transformers import pipeline, set_seed import random import re model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id).to('cpu') gpt2_pipe = pipeline('text-generation', model='Gustavosta/MagicPrompt-Stable-Diffusion', tokenizer='gpt2') gpt2_pipe2 = pipeline('text-generation', model='succinctly/text2image-prompt-generator') def infer1(starting_text): seed = random.randint(100, 1000000) set_seed(seed) if starting_text == "": starting_text: str = re.sub(r"[,:\-–.!;?_]", '', starting_text) response = gpt2_pipe(starting_text, max_length=(len(starting_text) + random.randint(60, 90)), num_return_sequences=4) response_list = [] for x in response: resp = x['generated_text'].strip() if resp != starting_text and len(resp) > (len(starting_text) + 4) and resp.endswith((":", "-", "—")) is False: response_list.append(resp+'\n') response_end = "\n".join(response_list) response_end = re.sub('[^ ]+\.[^ ]+','', response_end) response_end = response_end.replace("<", "").replace(">", "") if response_end != "": return response_end def infer2(starting_text): for count in range(6): seed = random.randint(100, 1000000) set_seed(seed) # If the text field is empty if starting_text == "": starting_text: str = line[random.randrange(0, len(line))].replace("\n", "").lower().capitalize() starting_text: str = re.sub(r"[,:\-–.!;?_]", '', starting_text) print(starting_text) response = gpt2_pipe2(starting_text, max_length=random.randint(60, 90), num_return_sequences=8) response_list = [] for x in response: resp = x['generated_text'].strip() if resp != starting_text and len(resp) > (len(starting_text) + 4) and resp.endswith((":", "-", "—")) is False: response_list.append(resp) response_end = "\n".join(response_list) response_end = re.sub('[^ ]+\.[^ ]+','', response_end) response_end = response_end.replace("<", "").replace(">", "") if response_end != "": return response_end if count == 5: return response_end def infer3(prompt, negative, steps, scale, seed): generator = torch.Generator(device='cpu').manual_seed(seed) img = pipe( prompt, height=512, width=512, num_inference_steps=steps, guidance_scale=scale, negative_prompt = negative, generator=generator, ).images return img block = gr.Blocks() with block: with gr.Group(): with gr.Box(): gr.Markdown( """ Model: Gustavosta/MagicPrompt-Stable-Diffusion """ ) with gr.Row() as row: with gr.Column(): txt = gr.Textbox(lines=1, label="Initial Text", placeholder="English Text here") gpt_btn = gr.Button("Generate prompt").style( margin=False, rounded=(False, True, True, False), ) with gr.Column(): out = gr.Textbox(lines=4, label="Generated Prompts") with gr.Box(): gr.Markdown( """ Model: succinctly/text2image-prompt-generator """ ) with gr.Row() as row: with gr.Column(): txt2 = gr.Textbox(lines=1, label="Initial Text", placeholder="English Text here") gpt_btn2 = gr.Button("Generate prompt").style( margin=False, rounded=(False, True, True, False), ) with gr.Column(): out2 = gr.Textbox(lines=4, label="Generated Prompts") with gr.Box(): gr.Markdown( """ Model: stable diffusion v1.5 """ ) with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): with gr.Column(): text = gr.Textbox( label="Enter your prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", ).style( border=(True, False, True, True), rounded=(True, False, False, True), container=False, ) negative = gr.Textbox( label="Enter your negative prompt", show_label=False, placeholder="Enter a negative prompt", elem_id="negative-prompt-text-input", ).style( border=(True, False, True, True), rounded=(True, False, False, True),container=False, ) btn = gr.Button("Generate image").style( margin=False, rounded=(False, True, True, False), ) gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(columns=(1, 2), height="auto") with gr.Row(elem_id="advanced-options"): samples = gr.Slider(label="Images", minimum=1, maximum=1, value=1, step=1, interactive=False) steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=12, step=1, interactive=True) scale = gr.Slider(label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1, interactive=True) seed = gr.Slider(label="Random seed",minimum=0,maximum=2147483647,step=1,randomize=True,interactive=True) gpt_btn.click(infer1,inputs=txt,outputs=out) gpt_btn2.click(infer2,inputs=txt2,outputs=out2) btn.click(infer3, inputs=[text, negative, steps, scale, seed], outputs=[gallery]) block.launch(show_api=False,enable_queue=True, debug=True)