Spaces:
Runtime error
Runtime error
File size: 32,043 Bytes
3c9a806 5101aba 7148e12 5101aba ab4c47c 3c9a806 afbb6e9 5101aba d492a58 5101aba b5a2293 d492a58 c1ff4cf 09ac26d 3c9a806 5101aba 3c9a806 8897e08 3c9a806 8897e08 3c9a806 8897e08 3c9a806 2337f0d 3c9a806 03177fd 2337f0d 3c9a806 2337f0d 3c9a806 04f27a5 3c9a806 2337f0d 3c9a806 5101aba 3c9a806 d74847a 3c9a806 d74847a 3c9a806 04f27a5 3c9a806 d74847a 3c9a806 d74847a 3c3d4fa 5101aba 3c9a806 2337f0d 3c9a806 d74847a 3c9a806 3c3d4fa 3c9a806 5101aba 3c9a806 d74847a 3c9a806 d74847a 3c9a806 d74847a 3c9a806 04f27a5 3c9a806 09ac26d 3c3d4fa 09ac26d 3c9a806 09ac26d 3c9a806 04f27a5 3c9a806 3c3d4fa 3c9a806 3c3d4fa 3c9a806 3c3d4fa 3c9a806 cf4af5e 3c9a806 cf4af5e 3c9a806 04f27a5 3c9a806 cf4af5e 3c9a806 7d7aedf 3c9a806 04f27a5 3c9a806 8897e08 3c9a806 2337f0d 3c9a806 cf4af5e 3c9a806 3d7a60f 2337f0d 3d7a60f 3c9a806 5101aba 3c9a806 2337f0d 3c9a806 5101aba 3c9a806 2337f0d 3c9a806 aa2ac84 3c9a806 bb83e2d 3c9a806 0c4cb96 03177fd 3d7a60f 3c9a806 03177fd 04f27a5 3c9a806 47c5597 3c9a806 47c5597 3c9a806 22945de 3c9a806 47c5597 3c9a806 f370d19 3c9a806 f370d19 3c9a806 f370d19 3c9a806 5101aba 3c9a806 f370d19 3c9a806 f370d19 3c9a806 ab80b89 3c9a806 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
import os, sys
from huggingface_hub import snapshot_download
is_local_run = False
code_dir = snapshot_download("One-2-3-45/code", token=os.environ['TOKEN']) if not is_local_run else "../code"
sys.path.append(code_dir)
elev_est_dir = os.path.join(code_dir, "one2345_elev_est/")
sys.path.append(elev_est_dir)
if not is_local_run:
import subprocess
subprocess.run(["sh", os.path.join(elev_est_dir, "install.sh")], cwd=elev_est_dir)
# export TORCH_CUDA_ARCH_LIST="7.0;7.2;8.0;8.6"
# export IABN_FORCE_CUDA=1
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
os.environ["IABN_FORCE_CUDA"] = "1"
os.environ["FORCE_CUDA"] = "1"
subprocess.run(["pip", "install", "inplace_abn"])
# FORCE_CUDA=1 pip install --no-cache-dir git+https://github.com/mit-han-lab/torchsparse.git@v1.4.0
subprocess.run(["pip", "install", "--no-cache-dir", "git+https://github.com/mit-han-lab/torchsparse.git@v1.4.0"])
import inspect
import shutil
import torch
import fire
import gradio as gr
import numpy as np
import plotly.graph_objects as go
from functools import partial
from lovely_numpy import lo
import cv2
from PIL import Image
import trimesh
import tempfile
from zero123_utils import init_model, predict_stage1_gradio, zero123_infer
from sam_utils import sam_init, sam_out_nosave
from utils import image_preprocess_nosave, gen_poses
from one2345_elev_est.tools.estimate_wild_imgs import estimate_elev
from rembg import remove
_GPU_INDEX = 0
_TITLE = '''One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization'''
_DESCRIPTION = '''
We reconstruct a 3D textured mesh from a single image by initially predicting multi-view images and then lifting them to 3D.
[<a href="http://One-2-3-45.com">Project</a>]
[<a href="https://github.com/One-2-3-45/One-2-3-45">GitHub</a>]
'''
# _HTML = '''<p>[<a href="https://github.com/One-2-3-45/One-2-3-45">GitHub</a>]
# <object alt="GitHub Repo stars" src="https://img.shields.io/github/stars/One-2-3-45/One-2-3-45?style=social&link=https%3A%2F%2Fgithub.com%2FOne-2-3-45%2FOne-2-3-45">
# </p>'''
# _HTML = '<script async defer src="https://buttons.github.io/buttons.js"></script> <a class="github-button" href="https://github.com/One-2-3-45/One-2-3-45" data-icon="octicon-star" data-show-count="true" aria-label="Star One-2-3-45/One-2-3-45 on GitHub">Star</a><p>'
_USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Run Generation**."
_BBOX_1 = "Predicting bounding box for the input image..."
_BBOX_2 = "Bounding box adjusted. Continue adjusting or **Run Generation**."
_BBOX_3 = "Bounding box predicted. Adjust it using sliders or **Run Generation**."
_SAM = "Preprocessing the input image... (safety check, SAM segmentation, *etc*.)"
_GEN_1 = "Predicting multi-view images... (may take \~13 seconds) <br> Images will be shown in the bottom right blocks."
_GEN_2 = "Predicting nearby views and generating mesh... (may take \~35 seconds) <br> Mesh will be shown on the right."
_DONE = "Done! Mesh is shown on the right. <br> If it is not satisfactory, please select **Retry view** checkboxes for inaccurate views and click **Regenerate selected view(s)** at the bottom."
_REGEN_1 = "Selected view(s) are regenerated. You can click **Regenerate nearby views and mesh**. <br> Alternatively, if the regenerated view(s) are still not satisfactory, you can repeat the previous step (select the view and regenerate)."
_REGEN_2 = "Regeneration done. Mesh is shown on the right."
def calc_cam_cone_pts_3d(polar_deg, azimuth_deg, radius_m, fov_deg):
'''
:param polar_deg (float).
:param azimuth_deg (float).
:param radius_m (float).
:param fov_deg (float).
:return (5, 3) array of float with (x, y, z).
'''
polar_rad = np.deg2rad(polar_deg)
azimuth_rad = np.deg2rad(azimuth_deg)
fov_rad = np.deg2rad(fov_deg)
polar_rad = -polar_rad # NOTE: Inverse of how used_x relates to x.
# Camera pose center:
cam_x = radius_m * np.cos(azimuth_rad) * np.cos(polar_rad)
cam_y = radius_m * np.sin(azimuth_rad) * np.cos(polar_rad)
cam_z = radius_m * np.sin(polar_rad)
# Obtain four corners of camera frustum, assuming it is looking at origin.
# First, obtain camera extrinsics (rotation matrix only):
camera_R = np.array([[np.cos(azimuth_rad) * np.cos(polar_rad),
-np.sin(azimuth_rad),
-np.cos(azimuth_rad) * np.sin(polar_rad)],
[np.sin(azimuth_rad) * np.cos(polar_rad),
np.cos(azimuth_rad),
-np.sin(azimuth_rad) * np.sin(polar_rad)],
[np.sin(polar_rad),
0.0,
np.cos(polar_rad)]])
# Multiply by corners in camera space to obtain go to space:
corn1 = [-1.0, np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
corn2 = [-1.0, -np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
corn3 = [-1.0, -np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
corn4 = [-1.0, np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
corn1 = np.dot(camera_R, corn1)
corn2 = np.dot(camera_R, corn2)
corn3 = np.dot(camera_R, corn3)
corn4 = np.dot(camera_R, corn4)
# Now attach as offset to actual 3D camera position:
corn1 = np.array(corn1) / np.linalg.norm(corn1, ord=2)
corn_x1 = cam_x + corn1[0]
corn_y1 = cam_y + corn1[1]
corn_z1 = cam_z + corn1[2]
corn2 = np.array(corn2) / np.linalg.norm(corn2, ord=2)
corn_x2 = cam_x + corn2[0]
corn_y2 = cam_y + corn2[1]
corn_z2 = cam_z + corn2[2]
corn3 = np.array(corn3) / np.linalg.norm(corn3, ord=2)
corn_x3 = cam_x + corn3[0]
corn_y3 = cam_y + corn3[1]
corn_z3 = cam_z + corn3[2]
corn4 = np.array(corn4) / np.linalg.norm(corn4, ord=2)
corn_x4 = cam_x + corn4[0]
corn_y4 = cam_y + corn4[1]
corn_z4 = cam_z + corn4[2]
xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4]
ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4]
zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4]
return np.array([xs, ys, zs]).T
class CameraVisualizer:
def __init__(self, gradio_plot):
self._gradio_plot = gradio_plot
self._fig = None
self._polar = 0.0
self._azimuth = 0.0
self._radius = 0.0
self._raw_image = None
self._8bit_image = None
self._image_colorscale = None
def encode_image(self, raw_image, elev=90):
'''
:param raw_image (H, W, 3) array of uint8 in [0, 255].
'''
# https://stackoverflow.com/questions/60685749/python-plotly-how-to-add-an-image-to-a-3d-scatter-plot
dum_img = Image.fromarray(np.ones((3, 3, 3), dtype='uint8')).convert('P', palette='WEB')
idx_to_color = np.array(dum_img.getpalette()).reshape((-1, 3))
self._raw_image = raw_image
self._8bit_image = Image.fromarray(raw_image).convert('P', palette='WEB', dither=None)
# self._8bit_image = Image.fromarray(raw_image.clip(0, 254)).convert(
# 'P', palette='WEB', dither=None)
self._image_colorscale = [
[i / 255.0, 'rgb({}, {}, {})'.format(*rgb)] for i, rgb in enumerate(idx_to_color)]
self._elev = elev
# return self.update_figure()
def update_figure(self):
fig = go.Figure()
if self._raw_image is not None:
(H, W, C) = self._raw_image.shape
x = np.zeros((H, W))
(y, z) = np.meshgrid(np.linspace(-1.0, 1.0, W), np.linspace(1.0, -1.0, H) * H / W)
angle_deg = self._elev-90
angle = np.radians(90-self._elev)
rotation_matrix = np.array([
[np.cos(angle), 0, np.sin(angle)],
[0, 1, 0],
[-np.sin(angle), 0, np.cos(angle)]
])
# Assuming x, y, z are the original 3D coordinates of the image
coordinates = np.stack((x, y, z), axis=-1) # Combine x, y, z into a single array
# Apply the rotation matrix
rotated_coordinates = np.matmul(coordinates, rotation_matrix)
# Extract the new x, y, z coordinates from the rotated coordinates
x, y, z = rotated_coordinates[..., 0], rotated_coordinates[..., 1], rotated_coordinates[..., 2]
print('x:', lo(x))
print('y:', lo(y))
print('z:', lo(z))
fig.add_trace(go.Surface(
x=x, y=y, z=z,
surfacecolor=self._8bit_image,
cmin=0,
cmax=255,
colorscale=self._image_colorscale,
showscale=False,
lighting_diffuse=1.0,
lighting_ambient=1.0,
lighting_fresnel=1.0,
lighting_roughness=1.0,
lighting_specular=0.3))
scene_bounds = 3.5
base_radius = 2.5
zoom_scale = 1.5 # Note that input radius offset is in [-0.5, 0.5].
fov_deg = 50.0
edges = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 3), (3, 4), (4, 1)]
input_cone = calc_cam_cone_pts_3d(
angle_deg, 0.0, base_radius, fov_deg) # (5, 3).
output_cone = calc_cam_cone_pts_3d(
self._polar, self._azimuth, base_radius + self._radius * zoom_scale, fov_deg) # (5, 3).
output_cones = []
for i in range(1,4):
output_cones.append(calc_cam_cone_pts_3d(
angle_deg, i*90, base_radius + self._radius * zoom_scale, fov_deg))
delta_deg = 30 if angle_deg <= -15 else -30
for i in range(4):
output_cones.append(calc_cam_cone_pts_3d(
angle_deg+delta_deg, 30+i*90, base_radius + self._radius * zoom_scale, fov_deg))
cones = [(input_cone, 'rgb(174, 54, 75)', 'Input view (Predicted view 1)')]
for i in range(len(output_cones)):
cones.append((output_cones[i], 'rgb(32, 77, 125)', f'Predicted view {i+2}'))
for idx, (cone, clr, legend) in enumerate(cones):
for (i, edge) in enumerate(edges):
(x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
(y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
(z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
fig.add_trace(go.Scatter3d(
x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
line=dict(color=clr, width=3),
name=legend, showlegend=(i == 1) and (idx <= 1)))
# Add label.
if cone[0, 2] <= base_radius / 2.0:
fig.add_trace(go.Scatter3d(
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] - 0.05], showlegend=False,
mode='text', text=legend, textposition='bottom center'))
else:
fig.add_trace(go.Scatter3d(
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] + 0.05], showlegend=False,
mode='text', text=legend, textposition='top center'))
# look at center of scene
fig.update_layout(
# width=640,
# height=480,
# height=400,
height=450,
autosize=True,
hovermode=False,
margin=go.layout.Margin(l=0, r=0, b=0, t=0),
showlegend=False,
legend=dict(
yanchor='bottom',
y=0.01,
xanchor='right',
x=0.99,
),
scene=dict(
aspectmode='manual',
aspectratio=dict(x=1, y=1, z=1.0),
camera=dict(
eye=dict(x=base_radius - 1.6, y=0.0, z=0.6),
center=dict(x=0.0, y=0.0, z=0.0),
up=dict(x=0.0, y=0.0, z=1.0)),
xaxis_title='',
yaxis_title='',
zaxis_title='',
xaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=False,
showgrid=True,
zeroline=False,
showbackground=True,
showspikes=False,
showline=False,
ticks=''),
yaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=False,
showgrid=True,
zeroline=False,
showbackground=True,
showspikes=False,
showline=False,
ticks=''),
zaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=False,
showgrid=True,
zeroline=False,
showbackground=True,
showspikes=False,
showline=False,
ticks='')))
self._fig = fig
return fig
def stage1_run(models, device, cam_vis, tmp_dir,
input_im, scale, ddim_steps, elev=None, rerun_all=[],
*btn_retrys):
is_rerun = True if cam_vis is None else False
model = models['turncam'].half()
stage1_dir = os.path.join(tmp_dir, "stage1_8")
if not is_rerun:
os.makedirs(stage1_dir, exist_ok=True)
output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4)), device=device, ddim_steps=ddim_steps, scale=scale)
stage2_steps = 50 # ddim_steps
zero123_infer(model, tmp_dir, indices=[0], device=device, ddim_steps=stage2_steps, scale=scale)
elev_output = estimate_elev(tmp_dir)
gen_poses(tmp_dir, elev_output)
show_in_im1 = np.asarray(input_im, dtype=np.uint8)
cam_vis.encode_image(show_in_im1, elev=elev_output)
new_fig = cam_vis.update_figure()
flag_lower_cam = elev_output <= 75
if flag_lower_cam:
output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(4,8)), device=device, ddim_steps=ddim_steps, scale=scale)
else:
output_ims_2 = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=list(range(8,12)), device=device, ddim_steps=ddim_steps, scale=scale)
torch.cuda.empty_cache()
return (90-elev_output, new_fig, *output_ims, *output_ims_2)
else:
rerun_idx = [i for i in range(len(btn_retrys)) if btn_retrys[i]]
if 90-int(elev["label"]) > 75:
rerun_idx_in = [i if i < 4 else i+4 for i in rerun_idx]
else:
rerun_idx_in = rerun_idx
for idx in rerun_idx_in:
if idx not in rerun_all:
rerun_all.append(idx)
print("rerun_idx", rerun_all)
output_ims = predict_stage1_gradio(model, input_im, save_path=stage1_dir, adjust_set=rerun_idx_in, device=device, ddim_steps=ddim_steps, scale=scale)
outputs = [gr.update(visible=True)] * 8
for idx, view_idx in enumerate(rerun_idx):
outputs[view_idx] = output_ims[idx]
reset = [gr.update(value=False)] * 8
torch.cuda.empty_cache()
return (rerun_all, *reset, *outputs)
def stage2_run(models, device, tmp_dir,
elev, scale, rerun_all=[], stage2_steps=50):
flag_lower_cam = 90-int(elev["label"]) <= 75
is_rerun = True if rerun_all else False
model = models['turncam'].half()
if not is_rerun:
if flag_lower_cam:
zero123_infer(model, tmp_dir, indices=list(range(1,8)), device=device, ddim_steps=stage2_steps, scale=scale)
else:
zero123_infer(model, tmp_dir, indices=list(range(1,4))+list(range(8,12)), device=device, ddim_steps=stage2_steps, scale=scale)
else:
print("rerun_idx", rerun_all)
zero123_infer(model, tmp_dir, indices=rerun_all, device=device, ddim_steps=stage2_steps, scale=scale)
dataset = tmp_dir
main_dir_path = os.path.dirname(os.path.abspath(
inspect.getfile(inspect.currentframe())))
torch.cuda.empty_cache()
os.chdir(os.path.join(code_dir, 'SparseNeuS_demo_v1/'))
bash_script = f'CUDA_VISIBLE_DEVICES={_GPU_INDEX} python exp_runner_generic_blender_val.py --specific_dataset_name {dataset} --mode export_mesh --conf confs/one2345_lod0_val_demo.conf --is_continue'
print(bash_script)
os.system(bash_script)
os.chdir(main_dir_path)
ply_path = os.path.join(tmp_dir, f"meshes_val_bg/lod0/mesh_00215000_gradio_lod0.ply")
mesh_path = os.path.join(tmp_dir, "mesh.obj")
# Read the textured mesh from .ply file
mesh = trimesh.load_mesh(ply_path)
axis = [1, 0, 0]
angle = np.radians(90)
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
mesh.apply_transform(rotation_matrix)
axis = [0, 0, 1]
angle = np.radians(180)
rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
mesh.apply_transform(rotation_matrix)
# flip x
mesh.vertices[:, 0] = -mesh.vertices[:, 0]
mesh.faces = np.fliplr(mesh.faces)
# Export the mesh as .obj file with colors
mesh.export(mesh_path, file_type='obj', include_color=True)
torch.cuda.empty_cache()
if not is_rerun:
return (mesh_path)
else:
return (mesh_path, [], gr.update(visible=False), gr.update(visible=False))
def nsfw_check(models, raw_im, device='cuda'):
safety_checker_input = models['clip_fe'](raw_im, return_tensors='pt').to(device)
(_, has_nsfw_concept) = models['nsfw'](
images=np.ones((1, 3)), clip_input=safety_checker_input.pixel_values)
print('has_nsfw_concept:', has_nsfw_concept)
del safety_checker_input
if np.any(has_nsfw_concept):
print('NSFW content detected.')
# Define the image size and background color
image_width = image_height = 256
background_color = (255, 255, 255) # White
# Create a blank image
image = Image.new("RGB", (image_width, image_height), background_color)
from PIL import ImageDraw
draw = ImageDraw.Draw(image)
text = "Potential NSFW content was detected."
text_color = (255, 0, 0)
text_position = (10, 123)
draw.text(text_position, text, fill=text_color)
text = "Please try again with a different image."
text_position = (10, 133)
draw.text(text_position, text, fill=text_color)
return image
else:
print('Safety check passed.')
return False
def preprocess_run(predictor, models, raw_im, preprocess, *bbox_sliders):
raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
check_results = nsfw_check(models, raw_im, device=predictor.device)
if check_results:
return check_results
image_sam = sam_out_nosave(predictor, raw_im.convert("RGB"), *bbox_sliders)
input_256 = image_preprocess_nosave(image_sam, lower_contrast=preprocess, rescale=True)
torch.cuda.empty_cache()
return input_256
def on_coords_slider(image, x_min, y_min, x_max, y_max, color=(88, 191, 131, 255)):
"""Draw a bounding box annotation for an image."""
print("on_coords_slider, drawing bbox...")
image.thumbnail([512, 512], Image.Resampling.LANCZOS)
image_size = image.size
if max(image_size) > 224:
image.thumbnail([224, 224], Image.Resampling.LANCZOS)
shrink_ratio = max(image.size) / max(image_size)
x_min = int(x_min * shrink_ratio)
y_min = int(y_min * shrink_ratio)
x_max = int(x_max * shrink_ratio)
y_max = int(y_max * shrink_ratio)
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGBA2BGRA)
image = cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, int(max(max(image.shape) / 400*2, 2)))
return cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA) # image[:, :, ::-1]
def init_bbox(image):
image.thumbnail([512, 512], Image.Resampling.LANCZOS)
width, height = image.size
image_rem = image.convert('RGBA')
image_nobg = remove(image_rem, alpha_matting=True)
arr = np.asarray(image_nobg)[:,:,-1]
x_nonzero = np.nonzero(arr.sum(axis=0))
y_nonzero = np.nonzero(arr.sum(axis=1))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
image_mini = image.copy()
image_mini.thumbnail([224, 224], Image.Resampling.LANCZOS)
shrink_ratio = max(image_mini.size) / max(width, height)
x_min_shrink = int(x_min * shrink_ratio)
y_min_shrink = int(y_min * shrink_ratio)
x_max_shrink = int(x_max * shrink_ratio)
y_max_shrink = int(y_max * shrink_ratio)
return [on_coords_slider(image_mini, x_min_shrink, y_min_shrink, x_max_shrink, y_max_shrink),
gr.update(value=x_min, maximum=width),
gr.update(value=y_min, maximum=height),
gr.update(value=x_max, maximum=width),
gr.update(value=y_max, maximum=height)]
def run_demo(
device_idx=_GPU_INDEX,
ckpt='zero123-xl.ckpt'):
device = f"cuda:{device_idx}" if torch.cuda.is_available() else "cpu"
models = init_model(device, os.path.join(code_dir, ckpt))
# model = models['turncam']
# sampler = DDIMSampler(model)
# init sam model
predictor = sam_init(device_idx)
with open('instructions_12345.md', 'r') as f:
article = f.read()
# NOTE: Examples must match inputs
example_folder = os.path.join(os.path.dirname(__file__), 'demo_examples')
example_fns = os.listdir(example_folder)
example_fns.sort()
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]
# Compose demo layout & data flow.
css = "#model-3d-out {height: 400px;} #plot-out {height: 450px;}"
with gr.Blocks(title=_TITLE, css=css) as demo:
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
# gr.HTML(_HTML)
with gr.Row(variant='panel'):
with gr.Column(scale=1.2):
image_block = gr.Image(type='pil', image_mode='RGBA', label='Input image', tool=None).style(height=290)
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
inputs=[image_block],
outputs=[image_block],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=40
)
preprocess_chk = gr.Checkbox(
False, label='Reduce image contrast (mitigate shadows on the backside)')
with gr.Accordion('Advanced options', open=False):
scale_slider = gr.Slider(0, 30, value=3, step=1,
label='Diffusion guidance scale')
steps_slider = gr.Slider(5, 200, value=75, step=5,
label='Number of diffusion inference steps')
run_btn = gr.Button('Run Generation', variant='primary', interactive=False)
guide_text = gr.Markdown(_USER_GUIDE, visible=True)
with gr.Column(scale=.8):
with gr.Row():
bbox_block = gr.Image(type='pil', label="Bounding box", interactive=False).style(height=290)
sam_block = gr.Image(type='pil', label="SAM output", interactive=False)
max_width = max_height = 256
with gr.Row():
x_min_slider = gr.Slider(label="X min", interactive=True, value=0, minimum=0, maximum=max_width, step=1)
y_min_slider = gr.Slider(label="Y min", interactive=True, value=0, minimum=0, maximum=max_height, step=1)
with gr.Row():
x_max_slider = gr.Slider(label="X max", interactive=True, value=max_width, minimum=0, maximum=max_width, step=1)
y_max_slider = gr.Slider(label="Y max", interactive=True, value=max_height, minimum=0, maximum=max_height, step=1)
bbox_sliders = [x_min_slider, y_min_slider, x_max_slider, y_max_slider]
mesh_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="One-2-3-45's Textured Mesh", elem_id="model-3d-out")
with gr.Row(variant='panel'):
with gr.Column(scale=0.85):
elev_output = gr.Label(label='Estimated elevation (degree, w.r.t. the horizontal plane)')
vis_output = gr.Plot(label='Camera poses of the input view (red) and predicted views (blue)', elem_id="plot-out")
with gr.Column(scale=1.15):
gr.Markdown('Predicted multi-view images')
with gr.Row():
view_1 = gr.Image(interactive=False, show_label=False).style(height=200)
view_2 = gr.Image(interactive=False, show_label=False).style(height=200)
view_3 = gr.Image(interactive=False, show_label=False).style(height=200)
view_4 = gr.Image(interactive=False, show_label=False).style(height=200)
with gr.Row():
btn_retry_1 = gr.Checkbox(label='Retry view 1')
btn_retry_2 = gr.Checkbox(label='Retry view 2')
btn_retry_3 = gr.Checkbox(label='Retry view 3')
btn_retry_4 = gr.Checkbox(label='Retry view 4')
with gr.Row():
view_5 = gr.Image(interactive=False, show_label=False).style(height=200)
view_6 = gr.Image(interactive=False, show_label=False).style(height=200)
view_7 = gr.Image(interactive=False, show_label=False).style(height=200)
view_8 = gr.Image(interactive=False, show_label=False).style(height=200)
with gr.Row():
btn_retry_5 = gr.Checkbox(label='Retry view 5')
btn_retry_6 = gr.Checkbox(label='Retry view 6')
btn_retry_7 = gr.Checkbox(label='Retry view 7')
btn_retry_8 = gr.Checkbox(label='Retry view 8')
with gr.Row():
regen_view_btn = gr.Button('1. Regenerate selected view(s)', variant='secondary', visible=False)
regen_mesh_btn = gr.Button('2. Regenerate nearby views and mesh', variant='secondary', visible=False)
update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
views = [view_1, view_2, view_3, view_4, view_5, view_6, view_7, view_8]
btn_retrys = [btn_retry_1, btn_retry_2, btn_retry_3, btn_retry_4, btn_retry_5, btn_retry_6, btn_retry_7, btn_retry_8]
rerun_idx = gr.State([])
tmp_dir = gr.State('./demo_tmp/tmp_dir')
def refresh(tmp_dir):
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
tmp_dir = tempfile.TemporaryDirectory(dir=os.path.join(os.path.dirname(__file__), 'demo_tmp'))
print("create tmp_dir", tmp_dir.name)
clear = [gr.update(value=[])] + [None] * 5 + [gr.update(visible=False)] * 2 + [None] * 8 + [gr.update(value=False)] * 8
return (tmp_dir.name, *clear)
placeholder = gr.Image(visible=False)
tmp_func = lambda x: False if not x else gr.update(visible=False)
disable_func = lambda x: gr.update(interactive=False)
enable_func = lambda x: gr.update(interactive=True)
image_block.change(disable_func, inputs=run_btn, outputs=run_btn, queue=False
).success(fn=refresh,
inputs=[tmp_dir],
outputs=[tmp_dir, rerun_idx, bbox_block, sam_block, elev_output, vis_output, mesh_output, regen_view_btn, regen_mesh_btn, *views, *btn_retrys],
queue=False
).success(fn=tmp_func, inputs=[image_block], outputs=[placeholder], queue=False
).success(fn=partial(update_guide, _BBOX_1), outputs=[guide_text], queue=False
).success(fn=init_bbox,
inputs=[image_block],
outputs=[bbox_block, *bbox_sliders], queue=False
).success(fn=partial(update_guide, _BBOX_3), outputs=[guide_text], queue=False
).success(enable_func, inputs=run_btn, outputs=run_btn, queue=False)
for bbox_slider in bbox_sliders:
bbox_slider.release(fn=on_coords_slider,
inputs=[image_block, *bbox_sliders],
outputs=[bbox_block],
queue=False
).success(fn=partial(update_guide, _BBOX_2), outputs=[guide_text], queue=False)
cam_vis = CameraVisualizer(vis_output)
gr.Markdown(article)
# Define the function to be called when any of the btn_retry buttons are clicked
def on_retry_button_click(*btn_retrys):
any_checked = any([btn_retry for btn_retry in btn_retrys])
print('any_checked:', any_checked, [btn_retry for btn_retry in btn_retrys])
if any_checked:
return (gr.update(visible=True), gr.update(visible=True))
else:
return (gr.update(), gr.update())
# make regen_btn visible when any of the btn_retry is checked
for btn_retry in btn_retrys:
# Add the event handlers to the btn_retry buttons
btn_retry.change(fn=on_retry_button_click, inputs=[*btn_retrys], outputs=[regen_view_btn, regen_mesh_btn], queue=False)
run_btn.click(fn=partial(update_guide, _SAM), outputs=[guide_text], queue=False
).success(fn=partial(preprocess_run, predictor, models),
inputs=[image_block, preprocess_chk, *bbox_sliders],
outputs=[sam_block]
).success(fn=partial(update_guide, _GEN_1), outputs=[guide_text], queue=False
).success(fn=partial(stage1_run, models, device, cam_vis),
inputs=[tmp_dir, sam_block, scale_slider, steps_slider],
outputs=[elev_output, vis_output, *views]
).success(fn=partial(update_guide, _GEN_2), outputs=[guide_text], queue=False
).success(fn=partial(stage2_run, models, device),
inputs=[tmp_dir, elev_output, scale_slider],
outputs=[mesh_output]
).success(fn=partial(update_guide, _DONE), outputs=[guide_text], queue=False)
regen_view_btn.click(fn=partial(stage1_run, models, device, None),
inputs=[tmp_dir, sam_block, scale_slider, steps_slider, elev_output, rerun_idx, *btn_retrys],
outputs=[rerun_idx, *btn_retrys, *views]
).success(fn=partial(update_guide, _REGEN_1), outputs=[guide_text], queue=False)
regen_mesh_btn.click(fn=partial(stage2_run, models, device),
inputs=[tmp_dir, elev_output, scale_slider, rerun_idx],
outputs=[mesh_output, rerun_idx, regen_view_btn, regen_mesh_btn]
).success(fn=partial(update_guide, _REGEN_2), outputs=[guide_text], queue=False)
demo.launch(enable_queue=True, share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
if __name__ == '__main__':
fire.Fire(run_demo) |