Spaces:
Running
Running
File size: 6,662 Bytes
7c84839 82036e1 42fb4ab 82036e1 b2b00d8 3859eb1 82036e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import uuid
from typing import Any, List, Optional
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
# from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.memory import ConversationSummaryMemory
from langchain.tools.render import render_text_description
from langchain_core.runnables.config import RunnableConfig
from pydantic import (
UUID4,
BaseModel,
ConfigDict,
Field,
InstanceOf,
field_validator,
model_validator,
)
from pydantic_core import PydanticCustomError
from crewai.agents import (
CacheHandler,
CrewAgentExecutor,
CrewAgentOutputParser,
ToolsHandler,
)
from crewai.prompts import Prompts
class Agent(BaseModel):
"""Represents an agent in a system.
Each agent has a role, a goal, a backstory, and an optional language model (llm).
The agent can also have memory, can operate in verbose mode, and can delegate tasks to other agents.
Attributes:
agent_executor: An instance of the CrewAgentExecutor class.
role: The role of the agent.
goal: The objective of the agent.
backstory: The backstory of the agent.
llm: The language model that will run the agent.
memory: Whether the agent should have memory or not.
verbose: Whether the agent execution should be in verbose mode.
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
"""
__hash__ = object.__hash__
model_config = ConfigDict(arbitrary_types_allowed=True)
id: UUID4 = Field(
default_factory=uuid.uuid4,
frozen=True,
description="Unique identifier for the object, not set by user.",
)
role: str = Field(description="Role of the agent")
goal: str = Field(description="Objective of the agent")
backstory: str = Field(description="Backstory of the agent")
api_key: str = Field(
default=os.getenv("OPENAI_API_KEY"),
description="API key for the language model.",
)
llm: Optional[Any] = Field(
default_factory=lambda: ChatOpenAI(
temperature=0.7,
model_name="gpt-4-1106-preview",
openai_api_key=os.getenv("OPENAI_API_KEY")
),
description="Language model that will run the agent.",
)
memory: bool = Field(
default=True, description="Whether the agent should have memory or not"
)
verbose: bool = Field(
default=False, description="Verbose mode for the Agent Execution"
)
allow_delegation: bool = Field(
default=True, description="Allow delegation of tasks to agents"
)
tools: List[Any] = Field(
default_factory=list, description="Tools at agents disposal"
)
agent_executor: Optional[InstanceOf[CrewAgentExecutor]] = Field(
default=None, description="An instance of the CrewAgentExecutor class."
)
tools_handler: Optional[InstanceOf[ToolsHandler]] = Field(
default=None, description="An instance of the ToolsHandler class."
)
cache_handler: Optional[InstanceOf[CacheHandler]] = Field(
default=CacheHandler(), description="An instance of the CacheHandler class."
)
@field_validator("id", mode="before")
@classmethod
def _deny_user_set_id(cls, v: Optional[UUID4]) -> None:
if v:
raise PydanticCustomError(
"may_not_set_field", "This field is not to be set by the user.", {}
)
@model_validator(mode="after")
def check_agent_executor(self) -> "Agent":
if not self.agent_executor:
self.set_cache_handler(self.cache_handler)
return self
def execute_task(
self, task: str, context: str = None, tools: List[Any] = None
) -> str:
"""Execute a task with the agent.
Args:
task: Task to execute.
context: Context to execute the task in.
tools: Tools to use for the task.
Returns:
Output of the agent
"""
if context:
task = "\n".join(
[task, "\nThis is the context you are working with:", context]
)
tools = tools or self.tools
self.agent_executor.tools = tools
return self.agent_executor.invoke(
{
"input": task,
"tool_names": self.__tools_names(tools),
"tools": render_text_description(tools),
},
RunnableConfig(callbacks=[self.tools_handler]),
)["output"]
def set_cache_handler(self, cache_handler) -> None:
self.cache_handler = cache_handler
self.tools_handler = ToolsHandler(cache=self.cache_handler)
self.__create_agent_executor()
def __create_agent_executor(self) -> CrewAgentExecutor:
"""Create an agent executor for the agent.
Returns:
An instance of the CrewAgentExecutor class.
"""
agent_args = {
"input": lambda x: x["input"],
"tools": lambda x: x["tools"],
"tool_names": lambda x: x["tool_names"],
"agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]),
}
executor_args = {
"tools": self.tools,
"verbose": self.verbose,
"handle_parsing_errors": True,
}
if self.memory:
summary_memory = ConversationSummaryMemory(
llm=self.llm, memory_key="chat_history", input_key="input"
)
executor_args["memory"] = summary_memory
agent_args["chat_history"] = lambda x: x["chat_history"]
prompt = Prompts.TASK_EXECUTION_WITH_MEMORY_PROMPT
else:
prompt = Prompts.TASK_EXECUTION_PROMPT
execution_prompt = prompt.partial(
goal=self.goal,
role=self.role,
backstory=self.backstory,
)
bind = self.llm.bind(stop=["\nObservation"])
inner_agent = (
agent_args
| execution_prompt
| bind
| CrewAgentOutputParser(
tools_handler=self.tools_handler, cache=self.cache_handler
)
)
self.agent_executor = CrewAgentExecutor(agent=inner_agent, **executor_args)
@staticmethod
def __tools_names(tools) -> str:
return ", ".join([t.name for t in tools])
|