Spaces:
Runtime error
Runtime error
File size: 5,653 Bytes
f0533a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# from cogvideoX
import torch
import torch.nn as nn
import math
from utils import (
get_context_parallel_group,
get_context_parallel_rank,
get_context_parallel_world_size,
get_context_parallel_group_rank,
)
def _conv_split(input_, dim=2, kernel_size=1):
cp_world_size = get_context_parallel_world_size()
# Bypass the function if context parallel is 1
if cp_world_size == 1:
return input_
# print('in _conv_split, cp_rank:', cp_rank, 'input_size:', input_.shape)
cp_rank = get_context_parallel_rank()
dim_size = (input_.size()[dim] - kernel_size) // cp_world_size
if cp_rank == 0:
output = input_.transpose(dim, 0)[: dim_size + kernel_size].transpose(dim, 0)
else:
# output = input_.transpose(dim, 0)[cp_rank * dim_size + 1:(cp_rank + 1) * dim_size + kernel_size].transpose(dim, 0)
output = input_.transpose(dim, 0)[
cp_rank * dim_size + kernel_size : (cp_rank + 1) * dim_size + kernel_size
].transpose(dim, 0)
output = output.contiguous()
# print('out _conv_split, cp_rank:', cp_rank, 'input_size:', output.shape)
return output
def _conv_gather(input_, dim=2, kernel_size=1):
cp_world_size = get_context_parallel_world_size()
# Bypass the function if context parallel is 1
if cp_world_size == 1:
return input_
group = get_context_parallel_group()
cp_rank = get_context_parallel_rank()
# print('in _conv_gather, cp_rank:', cp_rank, 'input_size:', input_.shape)
input_first_kernel_ = input_.transpose(0, dim)[:kernel_size].transpose(0, dim).contiguous()
if cp_rank == 0:
input_ = input_.transpose(0, dim)[kernel_size:].transpose(0, dim).contiguous()
else:
input_ = input_.transpose(0, dim)[max(kernel_size - 1, 0) :].transpose(0, dim).contiguous()
tensor_list = [torch.empty_like(torch.cat([input_first_kernel_, input_], dim=dim))] + [
torch.empty_like(input_) for _ in range(cp_world_size - 1)
]
if cp_rank == 0:
input_ = torch.cat([input_first_kernel_, input_], dim=dim)
tensor_list[cp_rank] = input_
torch.distributed.all_gather(tensor_list, input_, group=group)
# Note: torch.cat already creates a contiguous tensor.
output = torch.cat(tensor_list, dim=dim).contiguous()
# print('out _conv_gather, cp_rank:', cp_rank, 'input_size:', output.shape)
return output
def _cp_pass_from_previous_rank(input_, dim, kernel_size):
# Bypass the function if kernel size is 1
if kernel_size == 1:
return input_
group = get_context_parallel_group()
cp_rank = get_context_parallel_rank()
cp_group_rank = get_context_parallel_group_rank()
cp_world_size = get_context_parallel_world_size()
# print('in _pass_from_previous_rank, cp_rank:', cp_rank, 'input_size:', input_.shape)
global_rank = torch.distributed.get_rank()
global_world_size = torch.distributed.get_world_size()
input_ = input_.transpose(0, dim)
# pass from last rank
send_rank = global_rank + 1
recv_rank = global_rank - 1
if send_rank % cp_world_size == 0:
send_rank -= cp_world_size
if recv_rank % cp_world_size == cp_world_size - 1:
recv_rank += cp_world_size
recv_buffer = torch.empty_like(input_[-kernel_size + 1 :]).contiguous()
if cp_rank < cp_world_size - 1:
req_send = torch.distributed.isend(input_[-kernel_size + 1 :].contiguous(), send_rank, group=group)
if cp_rank > 0:
req_recv = torch.distributed.irecv(recv_buffer, recv_rank, group=group)
if cp_rank == 0:
input_ = torch.cat([torch.zeros_like(input_[:1])] * (kernel_size - 1) + [input_], dim=0)
else:
req_recv.wait()
input_ = torch.cat([recv_buffer, input_], dim=0)
input_ = input_.transpose(0, dim).contiguous()
return input_
def _drop_from_previous_rank(input_, dim, kernel_size):
input_ = input_.transpose(0, dim)[kernel_size - 1 :].transpose(0, dim)
return input_
class _ConvolutionScatterToContextParallelRegion(torch.autograd.Function):
@staticmethod
def forward(ctx, input_, dim, kernel_size):
ctx.dim = dim
ctx.kernel_size = kernel_size
return _conv_split(input_, dim, kernel_size)
@staticmethod
def backward(ctx, grad_output):
return _conv_gather(grad_output, ctx.dim, ctx.kernel_size), None, None
class _ConvolutionGatherFromContextParallelRegion(torch.autograd.Function):
@staticmethod
def forward(ctx, input_, dim, kernel_size):
ctx.dim = dim
ctx.kernel_size = kernel_size
return _conv_gather(input_, dim, kernel_size)
@staticmethod
def backward(ctx, grad_output):
return _conv_split(grad_output, ctx.dim, ctx.kernel_size), None, None
class _CPConvolutionPassFromPreviousRank(torch.autograd.Function):
@staticmethod
def forward(ctx, input_, dim, kernel_size):
ctx.dim = dim
ctx.kernel_size = kernel_size
return _cp_pass_from_previous_rank(input_, dim, kernel_size)
@staticmethod
def backward(ctx, grad_output):
return _drop_from_previous_rank(grad_output, ctx.dim, ctx.kernel_size), None, None
def conv_scatter_to_context_parallel_region(input_, dim, kernel_size):
return _ConvolutionScatterToContextParallelRegion.apply(input_, dim, kernel_size)
def conv_gather_from_context_parallel_region(input_, dim, kernel_size):
return _ConvolutionGatherFromContextParallelRegion.apply(input_, dim, kernel_size)
def cp_pass_from_previous_rank(input_, dim, kernel_size):
return _CPConvolutionPassFromPreviousRank.apply(input_, dim, kernel_size)
|