Spaces:
Runtime error
Runtime error
SoSa123456
commited on
Commit
•
e3ab055
1
Parent(s):
9cd3f2d
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,102 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
gr.load("models/m3hrdadfi/wav2vec2-large-xlsr-persian").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
gr.load("models/m3hrdadfi/wav2vec2-large-xlsr-persian").launch()
|
4 |
+
|
5 |
+
|
6 |
+
import librosa
|
7 |
+
import torch
|
8 |
+
import torchaudio
|
9 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
10 |
+
from datasets import load_dataset
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import hazm
|
14 |
+
import re
|
15 |
+
import string
|
16 |
+
|
17 |
+
import IPython.display as ipd
|
18 |
+
|
19 |
+
_normalizer = hazm.Normalizer()
|
20 |
+
chars_to_ignore = [
|
21 |
+
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
|
22 |
+
"#", "!", "؟", "?", "«", "»", "ء", "،", "(", ")", "؛", "'ٔ", "٬",'ٔ', ",", "?",
|
23 |
+
".", "!", "-", ";", ":",'"',"“", "%", "‘", "”", "�", "–", "…", "_", "”", '“', '„'
|
24 |
+
]
|
25 |
+
|
26 |
+
# In case of farsi
|
27 |
+
chars_to_ignore = chars_to_ignore + list(string.ascii_lowercase + string.digits)
|
28 |
+
|
29 |
+
chars_to_mapping = {
|
30 |
+
'ك': 'ک', 'دِ': 'د', 'بِ': 'ب', 'زِ': 'ز', 'ذِ': 'ذ', 'شِ': 'ش', 'سِ': 'س', 'ى': 'ی',
|
31 |
+
'ي': 'ی', 'أ': 'ا', 'ؤ': 'و', "ے": "ی", "ۀ": "ه", "ﭘ": "پ", "ﮐ": "ک", "ﯽ": "ی",
|
32 |
+
"ﺎ": "ا", "ﺑ": "ب", "ﺘ": "ت", "ﺧ": "خ", "ﺩ": "د", "ﺱ": "س", "ﻀ": "ض", "ﻌ": "ع",
|
33 |
+
"ﻟ": "ل", "ﻡ": "م", "ﻢ": "م", "ﻪ": "ه", "ﻮ": "و", "ئ": "ی", 'ﺍ': "ا", 'ة': "ه",
|
34 |
+
'ﯾ': "ی", 'ﯿ': "ی", 'ﺒ': "ب", 'ﺖ': "ت", 'ﺪ': "د", 'ﺮ': "ر", 'ﺴ': "س", 'ﺷ': "ش",
|
35 |
+
'ﺸ': "ش", 'ﻋ': "ع", 'ﻤ': "م", 'ﻥ': "ن", 'ﻧ': "ن", 'ﻭ': "و", 'ﺭ': "ر", "ﮔ": "گ",
|
36 |
+
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
|
37 |
+
}
|
38 |
+
|
39 |
+
def multiple_replace(text, chars_to_mapping):
|
40 |
+
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
|
41 |
+
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
|
42 |
+
|
43 |
+
def remove_special_characters(text, chars_to_ignore_regex):
|
44 |
+
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
|
45 |
+
return text
|
46 |
+
|
47 |
+
def normalizer(batch, chars_to_ignore, chars_to_mapping):
|
48 |
+
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
|
49 |
+
text = batch["sentence"].lower().strip()
|
50 |
+
|
51 |
+
text = _normalizer.normalize(text)
|
52 |
+
text = multiple_replace(text, chars_to_mapping)
|
53 |
+
text = remove_special_characters(text, chars_to_ignore_regex)
|
54 |
+
|
55 |
+
batch["sentence"] = text
|
56 |
+
return batch
|
57 |
+
|
58 |
+
|
59 |
+
def speech_file_to_array_fn(batch):
|
60 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
61 |
+
speech_array = speech_array.squeeze().numpy()
|
62 |
+
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
|
63 |
+
|
64 |
+
batch["speech"] = speech_array
|
65 |
+
return batch
|
66 |
+
|
67 |
+
|
68 |
+
def predict(batch):
|
69 |
+
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
70 |
+
|
71 |
+
input_values = features.input_values.to(device)
|
72 |
+
attention_mask = features.attention_mask.to(device)
|
73 |
+
|
74 |
+
with torch.no_grad():
|
75 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
76 |
+
|
77 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
78 |
+
|
79 |
+
batch["predicted"] = processor.batch_decode(pred_ids)[0]
|
80 |
+
return batch
|
81 |
+
|
82 |
+
|
83 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
84 |
+
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian")
|
85 |
+
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian").to(device)
|
86 |
+
|
87 |
+
dataset = load_dataset("common_voice", "fa", split="test[:1%]")
|
88 |
+
dataset = dataset.map(
|
89 |
+
normalizer,
|
90 |
+
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
|
91 |
+
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
|
92 |
+
)
|
93 |
+
|
94 |
+
dataset = dataset.map(speech_file_to_array_fn)
|
95 |
+
result = dataset.map(predict)
|
96 |
+
|
97 |
+
max_items = np.random.randint(0, len(result), 20).tolist()
|
98 |
+
for i in max_items:
|
99 |
+
reference, predicted = result["sentence"][i], result["predicted"][i]
|
100 |
+
print("reference:", reference)
|
101 |
+
print("predicted:", predicted)
|
102 |
+
print('---')
|