File size: 21,005 Bytes
feb2918 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
import torch
import cv2
import random
import os.path as osp
import argparse
from scipy.stats import spearmanr, pearsonr
from scipy.stats.stats import kendalltau as kendallr
import numpy as np
from time import time
from tqdm import tqdm
import pickle
import math
import wandb
import yaml
from collections import OrderedDict
from functools import reduce
from thop import profile
import copy
import cover.models as models
import cover.datasets as datasets
def train_test_split(dataset_path, ann_file, ratio=0.8, seed=42):
random.seed(seed)
print(seed)
video_infos = []
with open(ann_file, "r") as fin:
for line in fin.readlines():
line_split = line.strip().split(",")
filename, _, _, label = line_split
label = float(label)
filename = osp.join(dataset_path, filename)
video_infos.append(dict(filename=filename, label=label))
random.shuffle(video_infos)
return (
video_infos[: int(ratio * len(video_infos))],
video_infos[int(ratio * len(video_infos)) :],
)
def rank_loss(y_pred, y):
ranking_loss = torch.nn.functional.relu(
(y_pred - y_pred.t()) * torch.sign((y.t() - y))
)
scale = 1 + torch.max(ranking_loss)
return (
torch.sum(ranking_loss) / y_pred.shape[0] / (y_pred.shape[0] - 1) / scale
).float()
def gaussian(y, eps=1e-8):
return (y - y.mean()) / (y.std() + 1e-8)
def plcc_loss(y_pred, y):
sigma_hat, m_hat = torch.std_mean(y_pred, unbiased=False)
y_pred = (y_pred - m_hat) / (sigma_hat + 1e-8)
sigma, m = torch.std_mean(y, unbiased=False)
y = (y - m) / (sigma + 1e-8)
loss0 = torch.nn.functional.mse_loss(y_pred, y) / 4
rho = torch.mean(y_pred * y)
loss1 = torch.nn.functional.mse_loss(rho * y_pred, y) / 4
return ((loss0 + loss1) / 2).float()
def rescaled_l2_loss(y_pred, y):
y_pred_rs = (y_pred - y_pred.mean()) / y_pred.std()
y_rs = (y - y.mean()) / (y.std() + eps)
return torch.nn.functional.mse_loss(y_pred_rs, y_rs)
def rplcc_loss(y_pred, y, eps=1e-8):
## Literally (1 - PLCC) / 2
y_pred, y = gaussian(y_pred), gaussian(y)
cov = torch.sum(y_pred * y) / y_pred.shape[0]
# std = (torch.std(y_pred) + eps) * (torch.std(y) + eps)
return (1 - cov) / 2
def self_similarity_loss(f, f_hat, f_hat_detach=False):
if f_hat_detach:
f_hat = f_hat.detach()
return 1 - torch.nn.functional.cosine_similarity(f, f_hat, dim=1).mean()
def contrastive_similarity_loss(f, f_hat, f_hat_detach=False, eps=1e-8):
if f_hat_detach:
f_hat = f_hat.detach()
intra_similarity = torch.nn.functional.cosine_similarity(f, f_hat, dim=1).mean()
cross_similarity = torch.nn.functional.cosine_similarity(f, f_hat, dim=0).mean()
return (1 - intra_similarity) / (1 - cross_similarity + eps)
def rescale(pr, gt=None):
if gt is None:
pr = (pr - np.mean(pr)) / np.std(pr)
else:
pr = ((pr - np.mean(pr)) / np.std(pr)) * np.std(gt) + np.mean(gt)
return pr
sample_types = ["semantic", "technical", "aesthetic"]
def finetune_epoch(
ft_loader,
model,
model_ema,
optimizer,
scheduler,
device,
epoch=-1,
need_upsampled=False,
need_feat=False,
need_fused=False,
need_separate_sup=True,
):
model.train()
for i, data in enumerate(tqdm(ft_loader, desc=f"Training in epoch {epoch}")):
optimizer.zero_grad()
video = {}
for key in sample_types:
if key in data:
video[key] = data[key].to(device)
y = data["gt_label"].float().detach().to(device).unsqueeze(-1)
scores = model(video, inference=False, reduce_scores=False)
if len(scores) > 1:
y_pred = reduce(lambda x, y: x + y, scores)
else:
y_pred = scores[0]
y_pred = y_pred.mean((-3, -2, -1))
frame_inds = data["frame_inds"]
loss = 0 # p_loss + 0.3 * r_loss
if need_separate_sup:
p_loss_a = plcc_loss(scores[0].mean((-3, -2, -1)), y)
p_loss_b = plcc_loss(scores[1].mean((-3, -2, -1)), y)
p_loss_c = plcc_loss(scores[2].mean((-3, -2, -1)), y)
r_loss_a = rank_loss(scores[0].mean((-3, -2, -1)), y)
r_loss_b = rank_loss(scores[1].mean((-3, -2, -1)), y)
r_loss_c = rank_loss(scores[2].mean((-3, -2, -1)), y)
loss += (
p_loss_a + p_loss_b + p_loss_c + 0.3 * r_loss_a + 0.3 * r_loss_b + 0.3 * r_loss_c
) # + 0.2 * o_loss
wandb.log(
{
"train/plcc_loss_a": p_loss_a.item(),
"train/plcc_loss_b": p_loss_b.item(),
"train/plcc_loss_c": p_loss_c.item(),
}
)
wandb.log(
{"train/total_loss": loss.item(),}
)
loss.backward()
optimizer.step()
scheduler.step()
# ft_loader.dataset.refresh_hypers()
if model_ema is not None:
model_params = dict(model.named_parameters())
model_ema_params = dict(model_ema.named_parameters())
for k in model_params.keys():
model_ema_params[k].data.mul_(0.999).add_(
model_params[k].data, alpha=1 - 0.999
)
model.eval()
def profile_inference(inf_set, model, device):
video = {}
data = inf_set[0]
for key in sample_types:
if key in data:
video[key] = data[key].to(device).unsqueeze(0)
with torch.no_grad():
flops, params = profile(model, (video,))
print(
f"The FLOps of the Variant is {flops/1e9:.1f}G, with Params {params/1e6:.2f}M."
)
def inference_set(
inf_loader,
model,
device,
best_,
save_model=False,
suffix="s",
save_name="divide",
save_type="head",
):
results = []
best_s, best_p, best_k, best_r = best_
for i, data in enumerate(tqdm(inf_loader, desc="Validating")):
result = dict()
video, video_up = {}, {}
for key in sample_types:
if key in data:
video[key] = data[key].to(device)
## Reshape into clips
b, c, t, h, w = video[key].shape
video[key] = (
video[key]
.reshape(
b, c, data["num_clips"][key], t // data["num_clips"][key], h, w
)
.permute(0, 2, 1, 3, 4, 5)
.reshape(
b * data["num_clips"][key], c, t // data["num_clips"][key], h, w
)
)
if key + "_up" in data:
video_up[key] = data[key + "_up"].to(device)
## Reshape into clips
b, c, t, h, w = video_up[key].shape
video_up[key] = (
video_up[key]
.reshape(b, c, data["num_clips"], t // data["num_clips"], h, w)
.permute(0, 2, 1, 3, 4, 5)
.reshape(b * data["num_clips"], c, t // data["num_clips"], h, w)
)
# .unsqueeze(0)
with torch.no_grad():
result["pr_labels"] = model(video, reduce_scores=True).cpu().numpy()
if len(list(video_up.keys())) > 0:
result["pr_labels_up"] = model(video_up).cpu().numpy()
result["gt_label"] = data["gt_label"].item()
del video, video_up
results.append(result)
## generate the demo video for video quality localization
gt_labels = [r["gt_label"] for r in results]
pr_labels = [np.mean(r["pr_labels"][:]) for r in results]
pr_labels = rescale(pr_labels, gt_labels)
s = spearmanr(gt_labels, pr_labels)[0]
p = pearsonr(gt_labels, pr_labels)[0]
k = kendallr(gt_labels, pr_labels)[0]
r = np.sqrt(((gt_labels - pr_labels) ** 2).mean())
wandb.log(
{
f"val_{suffix}/SRCC-{suffix}": s,
f"val_{suffix}/PLCC-{suffix}": p,
f"val_{suffix}/KRCC-{suffix}": k,
f"val_{suffix}/RMSE-{suffix}": r,
}
)
del results, result # , video, video_up
torch.cuda.empty_cache()
if s + p > best_s + best_p and save_model:
state_dict = model.state_dict()
if save_type == "head":
head_state_dict = OrderedDict()
for key, v in state_dict.items():
if "backbone" in key:
continue
else:
head_state_dict[key] = v
print("Following keys are saved :", head_state_dict.keys())
torch.save(
{"state_dict": head_state_dict, "validation_results": best_,},
f"pretrained_weights/{save_name}_{suffix}_finetuned.pth",
)
else:
torch.save(
{"state_dict": state_dict, "validation_results": best_,},
f"pretrained_weights/{save_name}_{suffix}_finetuned.pth",
)
best_s, best_p, best_k, best_r = (
max(best_s, s),
max(best_p, p),
max(best_k, k),
min(best_r, r),
)
wandb.log(
{
f"val_{suffix}/best_SRCC-{suffix}": best_s,
f"val_{suffix}/best_PLCC-{suffix}": best_p,
f"val_{suffix}/best_KRCC-{suffix}": best_k,
f"val_{suffix}/best_RMSE-{suffix}": best_r,
}
)
print(
f"For {len(inf_loader)} videos, \nthe accuracy of the model: [{suffix}] is as follows:\n SROCC: {s:.4f} best: {best_s:.4f} \n PLCC: {p:.4f} best: {best_p:.4f} \n KROCC: {k:.4f} best: {best_k:.4f} \n RMSE: {r:.4f} best: {best_r:.4f}."
)
return best_s, best_p, best_k, best_r
# torch.save(results, f'{args.save_dir}/results_{dataset.lower()}_s{32}*{32}_ens{args.famount}.pkl')
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"-o", "--opt", type=str, default="cover.yml", help="the option file"
)
parser.add_argument(
"-t", "--target_set", type=str, default="val-kv1k", help="target_set"
)
parser.add_argument('-n', "--name", type=str, default="COVER_TMP", help='model name to save checkpoint')
parser.add_argument('-uh', "--usehead", type=int, default=0, help='wheather to load header weight from checkpoint')
args = parser.parse_args()
with open(args.opt, "r") as f:
opt = yaml.safe_load(f)
print(opt)
## adaptively choose the device
device = "cuda" if torch.cuda.is_available() else "cpu"
## defining model and loading checkpoint
bests_ = []
if opt.get("split_seed", -1) > 0:
num_splits = 10
else:
num_splits = 1
print(opt["split_seed"])
for split in range(10):
model = getattr(models, opt["model"]["type"])(**opt["model"]["args"]).to(device)
if opt.get("split_seed", -1) > 0:
opt["data"]["train"] = copy.deepcopy(opt["data"][args.target_set])
opt["data"]["eval"] = copy.deepcopy(opt["data"][args.target_set])
split_duo = train_test_split(
opt["data"][args.target_set]["args"]["data_prefix"],
opt["data"][args.target_set]["args"]["anno_file"],
seed=opt["split_seed"] * (split + 1),
)
(
opt["data"]["train"]["args"]["anno_file"],
opt["data"]["eval"]["args"]["anno_file"],
) = split_duo
opt["data"]["train"]["args"]["sample_types"]["technical"]["num_clips"] = 1
train_datasets = {}
for key in opt["data"]:
if key.startswith("train"):
train_dataset = getattr(datasets, opt["data"][key]["type"])(
opt["data"][key]["args"]
)
train_datasets[key] = train_dataset
print(len(train_dataset.video_infos))
train_loaders = {}
for key, train_dataset in train_datasets.items():
train_loaders[key] = torch.utils.data.DataLoader(
train_dataset,
batch_size=opt["batch_size"],
num_workers=opt["num_workers"],
shuffle=True,
)
val_datasets = {}
for key in opt["data"]:
if key.startswith("eval"):
val_dataset = getattr(datasets, opt["data"][key]["type"])(
opt["data"][key]["args"]
)
print(len(val_dataset.video_infos))
val_datasets[key] = val_dataset
val_loaders = {}
for key, val_dataset in val_datasets.items():
val_loaders[key] = torch.utils.data.DataLoader(
val_dataset,
batch_size=1,
num_workers=opt["num_workers"],
pin_memory=True,
)
run = wandb.init(
project=opt["wandb"]["project_name"],
name=opt["name"] + f"_target_{args.target_set}_split_{split}"
if num_splits > 1
else opt["name"],
reinit=True,
settings=wandb.Settings(start_method="thread"),
)
state_dict = torch.load(opt["test_load_path"], map_location=device)
# Load fine_tuned header from checkpoint
if args.usehead:
state_dict_head = torch.load(opt["test_load_header_path"], map_location=device)
for key in state_dict_head['state_dict'].keys():
state_dict[key] = state_dict_head['state_dict'][key]
# Allowing empty head weight
model.load_state_dict(state_dict, strict=False)
if opt["ema"]:
from copy import deepcopy
model_ema = deepcopy(model)
else:
model_ema = None
# profile_inference(val_dataset, model, device)
# finetune the model
param_groups = []
for key, value in dict(model.named_children()).items():
if "backbone" in key:
param_groups += [
{
"params": value.parameters(),
"lr": opt["optimizer"]["lr"]
* opt["optimizer"]["backbone_lr_mult"],
}
]
else:
param_groups += [
{"params": value.parameters(), "lr": opt["optimizer"]["lr"]}
]
optimizer = torch.optim.AdamW(
lr=opt["optimizer"]["lr"],
params=param_groups,
weight_decay=opt["optimizer"]["wd"],
)
warmup_iter = 0
for train_loader in train_loaders.values():
warmup_iter += int(opt["warmup_epochs"] * len(train_loader))
max_iter = int((opt["num_epochs"] + opt["l_num_epochs"]) * len(train_loader))
lr_lambda = (
lambda cur_iter: cur_iter / warmup_iter
if cur_iter <= warmup_iter
else 0.5 * (1 + math.cos(math.pi * (cur_iter - warmup_iter) / max_iter))
)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda,)
bests = {}
bests_n = {}
for key in val_loaders:
bests[key] = -1, -1, -1, 1000
bests_n[key] = -1, -1, -1, 1000
for key, value in dict(model.named_children()).items():
if "backbone" in key:
for param in value.parameters():
param.requires_grad = False
for epoch in range(opt["l_num_epochs"]):
print(f"Linear Epoch {epoch}:")
for key, train_loader in train_loaders.items():
finetune_epoch(
train_loader,
model,
model_ema,
optimizer,
scheduler,
device,
epoch,
opt.get("need_upsampled", False),
opt.get("need_feat", False),
opt.get("need_fused", False),
)
for key in val_loaders:
bests[key] = inference_set(
val_loaders[key],
model_ema if model_ema is not None else model,
device,
bests[key],
save_model=opt["save_model"],
save_name=args.name + "_head_" + args.target_set + f"_{split}",
suffix=key + "_s",
)
if model_ema is not None:
bests_n[key] = inference_set(
val_loaders[key],
model,
device,
bests_n[key],
save_model=opt["save_model"],
save_name=args.name
+ "_head_"
+ args.target_set
+ f"_{split}",
suffix=key + "_n",
)
else:
bests_n[key] = bests[key]
if opt["l_num_epochs"] >= 0:
for key in val_loaders:
print(
f"""For the linear transfer process on {key} with {len(val_loaders[key])} videos,
the best validation accuracy of the model-s is as follows:
SROCC: {bests[key][0]:.4f}
PLCC: {bests[key][1]:.4f}
KROCC: {bests[key][2]:.4f}
RMSE: {bests[key][3]:.4f}."""
)
print(
f"""For the linear transfer process on {key} with {len(val_loaders[key])} videos,
the best validation accuracy of the model-n is as follows:
SROCC: {bests_n[key][0]:.4f}
PLCC: {bests_n[key][1]:.4f}
KROCC: {bests_n[key][2]:.4f}
RMSE: {bests_n[key][3]:.4f}."""
)
for key, value in dict(model.named_children()).items():
if "backbone" in key:
for param in value.parameters():
param.requires_grad = True
for epoch in range(opt["num_epochs"]):
print(f"End-to-end Epoch {epoch}:")
for key, train_loader in train_loaders.items():
finetune_epoch(
train_loader,
model,
model_ema,
optimizer,
scheduler,
device,
epoch,
opt.get("need_upsampled", False),
opt.get("need_feat", False),
opt.get("need_fused", False),
)
for key in val_loaders:
bests[key] = inference_set(
val_loaders[key],
model_ema if model_ema is not None else model,
device,
bests[key],
save_model=opt["save_model"],
save_name=args.name + "_head_" + args.target_set + f"_{split}",
suffix=key + "_s",
save_type="full",
)
if model_ema is not None:
bests_n[key] = inference_set(
val_loaders[key],
model,
device,
bests_n[key],
save_model=opt["save_model"],
save_name=args.name
+ "_head_"
+ args.target_set
+ f"_{split}",
suffix=key + "_n",
save_type="full",
)
else:
bests_n[key] = bests[key]
if opt["num_epochs"] >= 0:
for key in val_loaders:
print(
f"""For the end-to-end transfer process on {key} with {len(val_loaders[key])} videos,
the best validation accuracy of the model-s is as follows:
SROCC: {bests[key][0]:.4f}
PLCC: {bests[key][1]:.4f}
KROCC: {bests[key][2]:.4f}
RMSE: {bests[key][3]:.4f}."""
)
print(
f"""For the end-to-end transfer process on {key} with {len(val_loaders[key])} videos,
the best validation accuracy of the model-n is as follows:
SROCC: {bests_n[key][0]:.4f}
PLCC: {bests_n[key][1]:.4f}
KROCC: {bests_n[key][2]:.4f}
RMSE: {bests_n[key][3]:.4f}."""
)
for key, value in dict(model.named_children()).items():
if "backbone" in key:
for param in value.parameters():
param.requires_grad = True
run.finish()
if __name__ == "__main__":
main()
|