File size: 6,833 Bytes
feb2918 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import argparse
import os
import csv
import torch
import pandas as pd
import numpy as np
import pickle as pkl
import decord
import yaml
from scipy import stats
from sklearn.metrics import mean_squared_error
from scipy.optimize import curve_fit
from cover.datasets import UnifiedFrameSampler, spatial_temporal_view_decomposition
from cover.models import COVER
# use case
# python evaluate_on_ytugc.py -o cover.yml -d cuda:3 --output result.csv -uh 0
def save_to_csv(video_name, pre_smos, pre_tmos, pre_amos, pre_overall, filename):
combined_data = list(zip(video_name, pre_smos, pre_tmos, pre_amos, pre_overall))
with open(filename, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(['Video', 'semantic score', 'technical score', 'aesthetic score', 'overall/final score'])
writer.writerows(combined_data)
mean_cover, std_cover = (
torch.FloatTensor([123.675, 116.28, 103.53]),
torch.FloatTensor([58.395, 57.12, 57.375]),
)
mean_clip, std_clip = (
torch.FloatTensor([122.77, 116.75, 104.09]),
torch.FloatTensor([68.50, 66.63, 70.32])
)
def fuse_results(results: list):
x = (results[0] + results[1] + results[2])
return {
"semantic" : results[0],
"technical": results[1],
"aesthetic": results[2],
"overall" : x,
}
def gaussian_rescale(pr):
# The results should follow N(0,1)
pr = (pr - np.mean(pr)) / np.std(pr)
return pr
def uniform_rescale(pr):
# The result scores should follow U(0,1)
return np.arange(len(pr))[np.argsort(pr).argsort()] / len(pr)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("-o", "--opt" , type=str, default="./cover.yml", help="the option file")
parser.add_argument('-d', "--device", type=str, default="cuda:0" , help='CUDA device id')
parser.add_argument("-t", "--target_set", type=str, default="val-ytugc", help="target_set")
parser.add_argument( "--output", type=str, default="ytugc.csv" , help='output file to store predict mos value')
args = parser.parse_args()
return args
def logistic_func(X, bayta1, bayta2, bayta3, bayta4):
# 4-parameter logistic function
logisticPart = 1 + np.exp(np.negative(np.divide(X - bayta3, np.abs(bayta4))))
yhat = bayta2 + np.divide(bayta1 - bayta2, logisticPart)
return yhat
if __name__ == '__main__':
args = parse_args()
with open(args.opt, "r") as f:
opt = yaml.safe_load(f)
### Load COVER
evaluator = COVER(**opt["model"]["args"]).to(args.device)
state_dict = torch.load(opt["test_load_path"], map_location=args.device)
# set strict=False here to avoid error of missing
# weight of prompt_learner in clip-iqa+, cross-gate
evaluator.load_state_dict(state_dict['state_dict'], strict=False)
dopt = opt["data"][args.target_set]["args"]
temporal_samplers = {}
for stype, sopt in dopt["sample_types"].items():
temporal_samplers[stype] = UnifiedFrameSampler(
sopt["clip_len"] // sopt["t_frag"],
sopt["t_frag"],
sopt["frame_interval"],
sopt["num_clips"],
)
if args.target_set == 'val-livevqc':
videos_dir = './datasets/LIVE_VQC/Video/'
datainfo = './datasets/LIVE_VQC/metainfo/LIVE_VQC_metadata.csv'
df = pd.read_csv(datainfo)
files = df['File'].tolist()
mos = df['MOS'].tolist()
elif args.target_set == 'val-kv1k':
videos_dir = './datasets/KoNViD/KoNViD_1k_videos/'
datainfo = './datasets/KoNViD/metainfo/KoNVid_metadata.csv'
df = pd.read_csv(datainfo)
files = df['Filename'].tolist()
files = [str(file) + '.mp4' for file in files]
mos = df['MOS'].tolist()
elif args.target_set == 'val-ytugc':
videos_dir = './datasets/YouTubeUGC/'
datainfo = './datasets/YouTubeUGC/../meta_info/Youtube-UGC_metadata.csv'
df = pd.read_csv(datainfo)
files = df['filename'].tolist()
mos = df['MOSFull'].tolist()
files = [str(file) + '_crf_10_ss_00_t_20.0.mp4' for file in files]
else:
print("unsupported video dataset for evaluation")
assert(0)
print(len(files))
pure_name_list = []
pre_overall = np.zeros(len(mos))
pre_smos = np.zeros(len(mos))
pre_tmos = np.zeros(len(mos))
pre_amos = np.zeros(len(mos))
gt_mos = np.array(mos)
count = 0
for vi in range(len(mos)):
video = files[vi]
pure_name = os.path.splitext(video)[0]
video_path = os.path.join(videos_dir, video)
views, _ = spatial_temporal_view_decomposition(
video_path, dopt["sample_types"], temporal_samplers
)
for k, v in views.items():
num_clips = dopt["sample_types"][k].get("num_clips", 1)
if k == 'technical' or k == 'aesthetic':
views[k] = (
((v.permute(1, 2, 3, 0) - mean_cover) / std_cover)
.permute(3, 0, 1, 2)
.reshape(v.shape[0], num_clips, -1, *v.shape[2:])
.transpose(0, 1)
.to(args.device)
)
elif k == 'semantic':
views[k] = (
((v.permute(1, 2, 3, 0) - mean_clip) / std_clip)
.permute(3, 0, 1, 2)
.reshape(v.shape[0], num_clips, -1, *v.shape[2:])
.transpose(0, 1)
.to(args.device)
)
results = [r.mean().item() for r in evaluator(views)]
pre_overall[count] = fuse_results(results)['overall']
pre_smos[count] = results[0]
pre_tmos[count] = results[1]
pre_amos[count] = results[2]
pure_name_list.append(pure_name)
print("Process ", video, ", predicted quality score is ", pre_overall[count])
count += 1
SROCC = stats.spearmanr(pre_overall, gt_mos)[0]
KROCC = stats.stats.kendalltau(pre_overall, gt_mos)[0]
# logistic regression btw y_pred & y
beta_init = [np.max(gt_mos), np.min(gt_mos), np.mean(pre_overall), 0.5]
popt, _ = curve_fit(logistic_func, pre_overall, gt_mos, p0=beta_init, maxfev=int(1e8))
pre_overall_logistic = logistic_func(pre_overall, *popt)
PLCC = stats.pearsonr(gt_mos, pre_overall_logistic)[0]
RMSE = np.sqrt(mean_squared_error(gt_mos, pre_overall_logistic))
print("Test results: SROCC={:.4f}, KROCC={:.4f}, PLCC={:.4f}, RMSE={:.4f}"
.format(SROCC, KROCC, PLCC, RMSE))
save_to_csv(pure_name_list, pre_smos, pre_tmos, pre_amos, pre_overall, args.output) |