File size: 6,833 Bytes
feb2918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import argparse
import os
import csv

import torch

import pandas as pd
import numpy as np
import pickle as pkl
import decord
import yaml

from scipy import stats
from sklearn.metrics import mean_squared_error
from scipy.optimize import curve_fit
from cover.datasets import UnifiedFrameSampler, spatial_temporal_view_decomposition
from cover.models import COVER

# use case
# python evaluate_on_ytugc.py -o cover.yml -d cuda:3 --output result.csv -uh 0

def save_to_csv(video_name, pre_smos, pre_tmos, pre_amos, pre_overall, filename):
    combined_data = list(zip(video_name, pre_smos, pre_tmos, pre_amos, pre_overall))

    with open(filename, 'w', newline='') as csvfile:
        writer = csv.writer(csvfile)
        writer.writerow(['Video', 'semantic score', 'technical score', 'aesthetic score', 'overall/final score'])
        writer.writerows(combined_data)

mean_cover, std_cover = (
    torch.FloatTensor([123.675, 116.28, 103.53]),
    torch.FloatTensor([58.395, 57.12, 57.375]),
)

mean_clip, std_clip = (
    torch.FloatTensor([122.77, 116.75, 104.09]),
    torch.FloatTensor([68.50, 66.63, 70.32])
)

def fuse_results(results: list):
    x = (results[0] + results[1] + results[2])
    return {
        "semantic" : results[0],
        "technical": results[1],
        "aesthetic": results[2],
        "overall"  : x,
    }


def gaussian_rescale(pr):
    # The results should follow N(0,1)
    pr = (pr - np.mean(pr)) / np.std(pr)
    return pr

 
def uniform_rescale(pr):
    # The result scores should follow U(0,1)
    return np.arange(len(pr))[np.argsort(pr).argsort()] / len(pr)


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("-o", "--opt"   , type=str, default="./cover.yml", help="the option file")
    parser.add_argument('-d', "--device", type=str, default="cuda:0"     , help='CUDA device id')
    parser.add_argument("-t", "--target_set", type=str, default="val-ytugc", help="target_set")
    parser.add_argument(      "--output", type=str, default="ytugc.csv" , help='output file to store predict mos value')
    args = parser.parse_args()
    return args


def logistic_func(X, bayta1, bayta2, bayta3, bayta4):
    # 4-parameter logistic function
    logisticPart = 1 + np.exp(np.negative(np.divide(X - bayta3, np.abs(bayta4))))
    yhat = bayta2 + np.divide(bayta1 - bayta2, logisticPart)
    return yhat


if __name__ == '__main__':
    args = parse_args()

    with open(args.opt, "r") as f:
        opt = yaml.safe_load(f)
    
    ### Load COVER
    evaluator = COVER(**opt["model"]["args"]).to(args.device)
    state_dict = torch.load(opt["test_load_path"], map_location=args.device)

    # set strict=False here to avoid error of missing
    # weight of prompt_learner in clip-iqa+, cross-gate
    evaluator.load_state_dict(state_dict['state_dict'], strict=False)

    dopt = opt["data"][args.target_set]["args"]
    temporal_samplers = {}
    for stype, sopt in dopt["sample_types"].items():
        temporal_samplers[stype] = UnifiedFrameSampler(
            sopt["clip_len"] // sopt["t_frag"],
            sopt["t_frag"],
            sopt["frame_interval"],
            sopt["num_clips"],
        )

    if args.target_set == 'val-livevqc':
        videos_dir = './datasets/LIVE_VQC/Video/'
        datainfo = './datasets/LIVE_VQC/metainfo/LIVE_VQC_metadata.csv'
        df = pd.read_csv(datainfo)
        files = df['File'].tolist()
        mos = df['MOS'].tolist()
    elif args.target_set == 'val-kv1k':
        videos_dir = './datasets/KoNViD/KoNViD_1k_videos/'
        datainfo = './datasets/KoNViD/metainfo/KoNVid_metadata.csv'
        df = pd.read_csv(datainfo)
        files = df['Filename'].tolist()
        files = [str(file) + '.mp4' for file in files]
        mos = df['MOS'].tolist()
    elif args.target_set == 'val-ytugc':
        videos_dir = './datasets/YouTubeUGC/'
        datainfo = './datasets/YouTubeUGC/../meta_info/Youtube-UGC_metadata.csv'
        df = pd.read_csv(datainfo)
        files = df['filename'].tolist()
        mos = df['MOSFull'].tolist()
        files = [str(file) + '_crf_10_ss_00_t_20.0.mp4' for file in files]
    else:
        print("unsupported video dataset for evaluation")
        assert(0)

    print(len(files))

    pure_name_list = []
    pre_overall = np.zeros(len(mos))
    pre_smos = np.zeros(len(mos))
    pre_tmos = np.zeros(len(mos))
    pre_amos = np.zeros(len(mos))
    gt_mos = np.array(mos)
    count = 0

    for vi in range(len(mos)):
        video = files[vi]
        pure_name = os.path.splitext(video)[0]
        video_path = os.path.join(videos_dir, video)

        views, _ = spatial_temporal_view_decomposition(
            video_path, dopt["sample_types"], temporal_samplers
        )
        
        for k, v in views.items():
            num_clips = dopt["sample_types"][k].get("num_clips", 1)
            if k == 'technical' or k == 'aesthetic':
                views[k] = (
                    ((v.permute(1, 2, 3, 0) - mean_cover) / std_cover)
                    .permute(3, 0, 1, 2)
                    .reshape(v.shape[0], num_clips, -1, *v.shape[2:])
                    .transpose(0, 1)
                    .to(args.device)
                )
            elif k == 'semantic':
                views[k] = (
                    ((v.permute(1, 2, 3, 0) - mean_clip) / std_clip)
                    .permute(3, 0, 1, 2)
                    .reshape(v.shape[0], num_clips, -1, *v.shape[2:])
                    .transpose(0, 1)
                    .to(args.device)
                )

        results = [r.mean().item() for r in evaluator(views)]

    
        pre_overall[count] = fuse_results(results)['overall']
        pre_smos[count] = results[0]
        pre_tmos[count] = results[1]
        pre_amos[count] = results[2]
        pure_name_list.append(pure_name)
        print("Process ", video, ", predicted quality score is ", pre_overall[count])
        count += 1


    SROCC = stats.spearmanr(pre_overall, gt_mos)[0]
    KROCC = stats.stats.kendalltau(pre_overall, gt_mos)[0]

    # logistic regression btw y_pred & y
    beta_init = [np.max(gt_mos), np.min(gt_mos), np.mean(pre_overall), 0.5]
    popt, _ = curve_fit(logistic_func, pre_overall, gt_mos, p0=beta_init, maxfev=int(1e8))
    pre_overall_logistic = logistic_func(pre_overall, *popt)

    PLCC = stats.pearsonr(gt_mos, pre_overall_logistic)[0]
    RMSE = np.sqrt(mean_squared_error(gt_mos, pre_overall_logistic))

    print("Test results: SROCC={:.4f}, KROCC={:.4f}, PLCC={:.4f}, RMSE={:.4f}"
          .format(SROCC, KROCC, PLCC, RMSE))

    save_to_csv(pure_name_list, pre_smos, pre_tmos, pre_amos, pre_overall, args.output)