File size: 6,102 Bytes
2665db2 f318285 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
title: COVER
emoji: 🏃
colorFrom: blue
colorTo: yellow
sdk: gradio
sdk_version: 4.31.5
app_file: app.py
pinned: false
license: mit
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
# COVER
Official Code for [CVPR Workshop2024] Paper *"COVER: A Comprehensive Video Quality Evaluator"*.
Official Code, Demo, Weights for the [Comprehensive Video Quality Evaluator (COVER)].
# Todo:: update date, hugging face model below
- xx xxx, 2024: We upload weights of [COVER](https://github.com/vztu/COVER/release/Model/COVER.pth) and [COVER++](TobeContinue) to Hugging Face models.
- xx xxx, 2024: We upload Code of [COVER](https://github.com/vztu/COVER)
- 12 Apr, 2024: COVER has been accepted by CVPR Workshop2024.
# Todo:: update [visitors](link) below
![visitors](https://visitor-badge.laobi.icu/badge?page_id=teowu/TobeContinue) [![](https://img.shields.io/github/stars/vztu/COVER)](https://github.com/vztu/COVER)
[![State-of-the-Art](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/QualityAssessment/COVER)
<a href="https://colab.research.google.com/github/taskswithcode/COVER/blob/master/TWCCOVER.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>
# Todo:: update predicted score for YT-UGC challenge dataset specified by AIS
**COVER** Pseudo-labelled Quality scores of [YT-UGC](https://www.deepmind.com/open-source/kinetics): [CSV](https://github.com/QualityAssessment/COVER/raw/master/cover_predictions/kinetics_400_1.csv)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/disentangling-aesthetic-and-technical-effects/video-quality-assessment-on-youtube-ugc)](https://paperswithcode.com/sota/video-quality-assessment-on-youtube-ugc?p=disentangling-aesthetic-and-technical-effects)
## Introduction
# Todo:: Add Introduction here
### the proposed COVER
*This inspires us to*
![Fig](figs/approach.png)
## Install
The repository can be installed via the following commands:
```shell
git clone https://github.com/vztu/COVER
cd COVER
pip install -e .
mkdir pretrained_weights
cd pretrained_weights
wget https://github.com/vztu/COVER/release/Model/COVER.pth
cd ..
```
## Evaluation: Judge the Quality of Any Video
### Try on Demos
You can run a single command to judge the quality of the demo videos in comparison with videos in VQA datasets.
```shell
python evaluate_one_video.py -v ./demo/video_1.mp4
```
or
```shell
python evaluate_one_video.py -v ./demo/video_2.mp4
```
Or choose any video you like to predict its quality:
```shell
python evaluate_one_video.py -v $YOUR_SPECIFIED_VIDEO_PATH$
```
### Outputs
#### ITU-Standarized Overall Video Quality Score
The script can directly score the video's overall quality (considering all perspectives).
```shell
python evaluate_one_video.py -v $YOUR_SPECIFIED_VIDEO_PATH$
```
The final output score is averaged among all perspectives.
## Evaluate on a Exsiting Video Dataset
```shell
python evaluate_one_dataset.py -in $YOUR_SPECIFIED_DIR$ -out $OUTPUT_CSV_PATH$
```
## Evaluate on a Set of Unlabelled Videos
```shell
python evaluate_a_set_of_videos.py -in $YOUR_SPECIFIED_DIR$ -out $OUTPUT_CSV_PATH$
```
The results are stored as `.csv` files in cover_predictions in your `OUTPUT_CSV_PATH`.
Please feel free to use COVER to pseudo-label your non-quality video datasets.
## Data Preparation
We have already converted the labels for most popular datasets you will need for Blind Video Quality Assessment,
and the download links for the **videos** are as follows:
:book: LSVQ: [Github](https://github.com/baidut/PatchVQ)
:book: KoNViD-1k: [Official Site](http://database.mmsp-kn.de/konvid-1k-database.html)
:book: LIVE-VQC: [Official Site](http://live.ece.utexas.edu/research/LIVEVQC)
:book: YouTube-UGC: [Official Site](https://media.withyoutube.com)
*(Please contact the original authors if the download links were unavailable.)*
After downloading, kindly put them under the `../datasets` or anywhere but remember to change the `data_prefix` respectively in the [config file](cover.yml).
# Training: Adapt COVER to your video quality dataset!
Now you can employ ***head-only/end-to-end transfer*** of COVER to get dataset-specific VQA prediction heads.
We still recommend **head-only** transfer. As we have evaluated in the paper, this method has very similar performance with *end-to-end transfer* (usually 1%~2% difference), but will require **much less** GPU memory, as follows:
```shell
python transfer_learning.py -t $YOUR_SPECIFIED_DATASET_NAME$
```
For existing public datasets, type the following commands for respective ones:
- `python transfer_learning.py -t val-kv1k` for KoNViD-1k.
- `python transfer_learning.py -t val-ytugc` for YouTube-UGC.
- `python transfer_learning.py -t val-cvd2014` for CVD2014.
- `python transfer_learning.py -t val-livevqc` for LIVE-VQC.
As the backbone will not be updated here, the checkpoint saving process will only save the regression heads with only `398KB` file size (compared with `200+MB` size of the full model). To use it, simply replace the head weights with the official weights [COVER.pth](https://github.com/vztu/COVER/release/Model/COVER.pth).
We also support ***end-to-end*** fine-tune right now (by modifying the `num_epochs: 0` to `num_epochs: 15` in `./cover.yml`). It will require more memory cost and more storage cost for the weights (with full parameters) saved, but will result in optimal accuracy.
Fine-tuning curves by authors can be found here: [Official Curves](https://wandb.ai/timothyhwu/COVER) for reference.
## Visualization
### WandB Training and Evaluation Curves
You can be monitoring your results on WandB!
## Acknowledgement
Thanks for every participant of the subjective studies!
## Citation
Should you find our work interesting and would like to cite it, please feel free to add these in your references!
# Todo, add bibtex of cover below
```bibtex
%cover
``` |