File size: 3,743 Bytes
feb2918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch

import argparse
import os
import pickle as pkl

import decord
import numpy as np
import yaml
from tqdm import tqdm

from cover.datasets import (
    UnifiedFrameSampler,
    ViewDecompositionDataset,
    spatial_temporal_view_decomposition,
)
from cover.models import COVER

mean, std = (
    torch.FloatTensor([123.675, 116.28, 103.53]),
    torch.FloatTensor([58.395, 57.12, 57.375]),
)

mean_clip, std_clip = (
    torch.FloatTensor([122.77, 116.75, 104.09]),
    torch.FloatTensor([68.50, 66.63, 70.32])
)

def fuse_results(results: list):
    x = (results[0] + results[1] + results[2])
    return {
        "semantic" : results[0],
        "technical": results[1],
        "aesthetic": results[2],
        "overall"  : x,
    }

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("-o", "--opt"   , type=str, default="./cover.yml", help="the option file")
    parser.add_argument('-d', "--device", type=str, default="cuda"       , help='CUDA device id')
    parser.add_argument("-i", "--input_video_dir", type=str, default="./demo", help="the input video dir")
    parser.add_argument(      "--output", type=str, default="./demo.csv" , help='output file to store predict mos value')
    args = parser.parse_args()
    return args


if __name__ == "__main__":

    args = parse_args()

    with open(args.opt, "r") as f:
        opt = yaml.safe_load(f)

    ### Load COVER
    evaluator = COVER(**opt["model"]["args"]).to(args.device)
    state_dict = torch.load(opt["test_load_path"], map_location=args.device)
    
    # set strict=False here to avoid error of missing
    # weight of prompt_learner in clip-iqa+, cross-gate
    evaluator.load_state_dict(state_dict['state_dict'], strict=False)


    video_paths = []
    all_results = {}

    with open(args.output, "w") as w:
        w.write(f"path, semantic score, technical score, aesthetic score, overall/final score\n")

    dopt = opt["data"]["val-l1080p"]["args"]

    dopt["anno_file"] = None
    dopt["data_prefix"] = args.input_video_dir

    dataset = ViewDecompositionDataset(dopt)

    dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=1, num_workers=opt["num_workers"], pin_memory=True,
    )

    sample_types = ["semantic", "technical", "aesthetic"]

    for i, data in enumerate(tqdm(dataloader, desc="Testing")):
        if len(data.keys()) == 1:
            ##  failed data
            continue

        video = {}
        for key in sample_types:
            if key in data:
                video[key] = data[key].to(args.device)
                b, c, t, h, w = video[key].shape
                video[key] = (
                    video[key]
                    .reshape(
                        b, c, data["num_clips"][key], t // data["num_clips"][key], h, w
                    )
                    .permute(0, 2, 1, 3, 4, 5)
                    .reshape(
                        b * data["num_clips"][key], c, t // data["num_clips"][key], h, w
                    )
                )
    
        with torch.no_grad():
            results = evaluator(video, reduce_scores=False)
            results = [np.mean(l.cpu().numpy()) for l in results]

        rescaled_results = fuse_results(results)
        # all_results[data["name"][0]] = rescaled_results

        # with open(
        #    f"cover_predictions/val-custom_{args.input_video_dir.split('/')[-1]}.pkl", "wb"
        # ) as wf:
        # pkl.dump(all_results, wf)
        
        with open(args.output, "a") as w:
            w.write(
                f'{data["name"][0].split("/")[-1]},{rescaled_results["semantic"]:4f},{rescaled_results["technical"]:4f},{rescaled_results["aesthetic"]:4f},{rescaled_results["overall"]:4f}\n'
            )