COVER / app.py
nanushio
- [MINOR] [SCRIPT] [CREATE] 1. create app.py
6ab99a7
raw
history blame
3.04 kB
import gradio as gr
import torch
import argparse
import pickle as pkl
import decord
from decord import VideoReader
import numpy as np
import yaml
from cover.datasets import UnifiedFrameSampler, spatial_temporal_view_decomposition
from cover.models import COVER
mean, std = (
torch.FloatTensor([123.675, 116.28, 103.53]),
torch.FloatTensor([58.395, 57.12, 57.375]),
)
mean_clip, std_clip = (
torch.FloatTensor([122.77, 116.75, 104.09]),
torch.FloatTensor([68.50, 66.63, 70.32])
)
def fuse_results(results: list):
x = (results[0] + results[1] + results[2])
return {
"semantic" : results[0],
"technical": results[1],
"aesthetic": results[2],
"overall" : x,
}
def inference_one_video(input_video):
"""
BASIC SETTINGS
"""
torch.cuda.current_device()
torch.cuda.empty_cache()
torch.backends.cudnn.benchmark = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with open("./cover.yml", "r") as f:
opt = yaml.safe_load(f)
dopt = opt["data"]["val-ytugc"]["args"]
temporal_samplers = {}
for stype, sopt in dopt["sample_types"].items():
temporal_samplers[stype] = UnifiedFrameSampler(
sopt["clip_len"] // sopt["t_frag"],
sopt["t_frag"],
sopt["frame_interval"],
sopt["num_clips"],
)
"""
LOAD MODEL
"""
evaluator = COVER(**opt["model"]["args"]).to(device)
state_dict = torch.load(opt["test_load_path"], map_location=device)
# set strict=False here to avoid error of missing
# weight of prompt_learner in clip-iqa+, cross-gate
evaluator.load_state_dict(state_dict['state_dict'], strict=False)
"""
TESTING
"""
views, _ = spatial_temporal_view_decomposition(
input_video, dopt["sample_types"], temporal_samplers
)
for k, v in views.items():
num_clips = dopt["sample_types"][k].get("num_clips", 1)
if k == 'technical' or k == 'aesthetic':
views[k] = (
((v.permute(1, 2, 3, 0) - mean) / std)
.permute(3, 0, 1, 2)
.reshape(v.shape[0], num_clips, -1, *v.shape[2:])
.transpose(0, 1)
.to(device)
)
elif k == 'semantic':
views[k] = (
((v.permute(1, 2, 3, 0) - mean_clip) / std_clip)
.permute(3, 0, 1, 2)
.reshape(v.shape[0], num_clips, -1, *v.shape[2:])
.transpose(0, 1)
.to(device)
)
results = [r.mean().item() for r in evaluator(views)]
pred_score = fuse_results(results)
return pred_score
# Define the input and output types for Gradio
video_input = gr.inputs.Video(type="numpy", label="Input Video")
output_label = gr.outputs.JSON(label="Scores")
# Create the Gradio interface
gradio_app = gr.Interface(fn=inference_one_video, inputs=video_input, outputs=output_label)
if __name__ == "__main__":
gradio_app.launch()