COVER / cover /models /clip_model.py
nanushio
+ [MAJOR] [ROOT] [CREATE] 1. fork repo from COVER github
feb2918
raw
history blame
26.1 kB
import hashlib
import os
import urllib
import warnings
from tqdm import tqdm
from typing import Tuple, Union, List
from collections import OrderedDict
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
_MODELS = {
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
}
def _download(url: str, root: str):
os.makedirs(root, exist_ok=True)
filename = os.path.basename(url)
expected_sha256 = url.split("/")[-2]
download_target = os.path.join(root, filename)
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
if os.path.isfile(download_target):
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
return download_target
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break
output.write(buffer)
loop.update(len(buffer))
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
return download_target
def available_models() -> List[str]:
"""Returns the names of available CLIP models"""
return list(_MODELS.keys())
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
"""Load a CLIP model
Parameters
----------
name : str
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
device : Union[str, torch.device]
The device to put the loaded model
jit : bool
Whether to load the optimized JIT model or more hackable non-JIT model (default).
download_root: str
path to download the model files; by default, it uses "~/.cache/clip"
Returns
-------
model : torch.nn.Module
The CLIP model
preprocess : Callable[[PIL.Image], torch.Tensor]
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
"""
if name in _MODELS:
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
elif os.path.isfile(name):
model_path = name
else:
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
with open(model_path, 'rb') as opened_file:
try:
# loading JIT archive
model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
state_dict = None
except RuntimeError:
# loading saved state dict
if jit:
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
jit = False
state_dict = torch.load(opened_file, map_location="cpu")
if not jit:
model = build_model(state_dict or model.state_dict()).to(device)
if str(device) == "cpu":
model.float()
return model
# patch the device names
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
def patch_device(module):
try:
graphs = [module.graph] if hasattr(module, "graph") else []
except RuntimeError:
graphs = []
if hasattr(module, "forward1"):
graphs.append(module.forward1.graph)
for graph in graphs:
for node in graph.findAllNodes("prim::Constant"):
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
node.copyAttributes(device_node)
model.apply(patch_device)
patch_device(model.encode_image)
patch_device(model.encode_text)
# patch dtype to float32 on CPU
if str(device) == "cpu":
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
float_node = float_input.node()
def patch_float(module):
try:
graphs = [module.graph] if hasattr(module, "graph") else []
except RuntimeError:
graphs = []
if hasattr(module, "forward1"):
graphs.append(module.forward1.graph)
for graph in graphs:
for node in graph.findAllNodes("aten::to"):
inputs = list(node.inputs())
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
if inputs[i].node()["value"] == 5:
inputs[i].node().copyAttributes(float_node)
model.apply(patch_float)
patch_float(model.encode_image)
patch_float(model.encode_text)
model.float()
return model
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1):
super().__init__()
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride
if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
self.downsample = nn.Sequential(OrderedDict([
("-1", nn.AvgPool2d(stride)),
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
("1", nn.BatchNorm2d(planes * self.expansion))
]))
def forward(self, x: torch.Tensor):
identity = x
out = self.relu(self.bn1(self.conv1(x)))
out = self.relu(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class AttentionPool2d(nn.Module):
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
self.spacial_dim = spacial_dim
self.embed_dim = embed_dim
def forward(self, x, return_token=False, pos_embedding=False):
n, c, h, w = x.shape
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
if pos_embedding:
positional_embedding_resize = F.interpolate(self.positional_embedding.unsqueeze(
0).unsqueeze(0), size=(x.size(0), x.size(2)), mode='bicubic').squeeze(0).squeeze(0)
x = x + positional_embedding_resize[:, None, :].to(x.dtype) # (HW+1)NC
x, _ = F.multi_head_attention_forward(
query=x, key=x, value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
if return_token:
return x[0], x[1:]
else:
return x[0]
class ModifiedResNet(nn.Module):
"""
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
super().__init__()
self.output_dim = output_dim
self.input_resolution = input_resolution
# the 3-layer stem
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(width // 2)
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(width // 2)
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.avgpool = nn.AvgPool2d(2)
self.relu = nn.ReLU(inplace=True)
# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
self.feature_dim_list = [width, width * 4, width * 8, width * 16, width * 32]
embed_dim = width * 32 # the ResNet feature dimension
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride)]
self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes))
return nn.Sequential(*layers)
def forward_features(self, x, return_token=False, pos_embedding=False):
def stem(x):
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
x = self.relu(bn(conv(x)))
x = self.avgpool(x)
return x
x = x.type(self.conv1.weight.dtype)
x = stem(x)
feat_list = [x]
x = self.layer1(x)
feat_list += [x]
x = self.layer2(x)
feat_list += [x]
x = self.layer3(x)
feat_list += [x]
x = self.layer4(x)
feat_list += [x]
return feat_list
def forward(self, x, return_token=False, pos_embedding=False):
def stem(x):
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
x = self.relu(bn(conv(x)))
x = self.avgpool(x)
return x
x = x.type(self.conv1.weight.dtype)
x = stem(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
if return_token:
x, tokens = self.attnpool(x, return_token, pos_embedding)
return x, tokens
else:
x = self.attnpool(x, return_token, pos_embedding)
return x
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
def forward(self, x: torch.Tensor):
return self.resblocks(x)
class VisionTransformer(nn.Module):
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width,
kernel_size=patch_size, stride=patch_size, bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads)
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
def forward(self, x: torch.Tensor, return_token=True, pos_embedding=False):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1],
dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
if pos_embedding:
positional_embedding_resize = F.interpolate(self.positional_embedding.unsqueeze(
0).unsqueeze(0), size=(x.size(1), x.size(2)), mode='bicubic').squeeze(0).squeeze(0)
x = x + positional_embedding_resize.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
token = self.ln_post(x[:, 1:, :])
x = self.ln_post(x[:, 0, :])
if self.proj is not None:
x = x @ self.proj
if return_token:
return x, token
else:
return x
class CLIP(nn.Module):
def __init__(self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int
):
super().__init__()
self.context_length = context_length
if isinstance(vision_layers, (tuple, list)):
vision_heads = vision_width * 32 // 64
self.visual = ModifiedResNet(
layers=vision_layers,
output_dim=embed_dim,
heads=vision_heads,
input_resolution=image_resolution,
width=vision_width
)
else:
vision_heads = vision_width // 64
self.visual = VisionTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim
)
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask()
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
if isinstance(self.visual, ModifiedResNet):
if self.visual.attnpool is not None:
std = self.visual.attnpool.c_proj.in_features ** -0.5
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
for name, param in resnet_block.named_parameters():
if name.endswith("bn3.weight"):
nn.init.zeros_(param)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image, pos_embedding):
return self.visual(image.type(self.dtype), pos_embedding=pos_embedding)
def encode_text(self, text):
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def forward(self, image, text, pos_embedding=False, text_features=None):
# only use the image encoder in CLIP
image_features, token_features = self.encode_image(image, pos_embedding)
# normalized features
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
# don't process encode_text
# if text_features is None:
# text_features = self.encode_text(text)
# text_features = text_features / text_features.norm(dim=-1, keepdim=True)
# cosine similarity as logits
# logit_scale = self.logit_scale.exp()
# logits_per_image = logit_scale * image_features @ text_features.t()
# logits_per_text = logits_per_image.t()
logits_per_image = 0
logits_per_text = 0
# shape = [global_batch_size, global_batch_size]
return logits_per_image, logits_per_text, image_features, token_features
def convert_weights(model: nn.Module):
"""Convert applicable model parameters to fp16"""
def _convert_weights_to_fp16(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
l.weight.data = l.weight.data.half()
if l.bias is not None:
l.bias.data = l.bias.data.half()
if isinstance(l, nn.MultiheadAttention):
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
tensor = getattr(l, attr)
if tensor is not None:
tensor.data = tensor.data.half()
for name in ["text_projection", "proj"]:
if hasattr(l, name):
attr = getattr(l, name)
if attr is not None:
attr.data = attr.data.half()
model.apply(_convert_weights_to_fp16)
def build_model(state_dict: dict):
vit = "visual.proj" in state_dict
if vit:
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len([k for k in state_dict.keys() if k.startswith(
"visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
image_resolution = vision_patch_size * grid_size
else:
counts: list = [len(set(k.split(".")[2]
for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
vision_layers = tuple(counts)
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
vision_patch_size = None
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
image_resolution = output_width * 32
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
model = CLIP(
embed_dim,
image_resolution, vision_layers, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
)
for key in ["input_resolution", "context_length", "vocab_size"]:
if key in state_dict:
del state_dict[key]
convert_weights(model)
model.load_state_dict(state_dict)
return model.eval()