COVER / cover /models /clipiqa_arch.py
nanushio
+ [MAJOR] [ROOT] [CREATE] 1. fork repo from COVER github
feb2918
raw
history blame
6.86 kB
r"""CLIP-IQA metric, proposed by
Exploring CLIP for Assessing the Look and Feel of Images.
Jianyi Wang Kelvin C.K. Chan Chen Change Loy.
AAAI 2023.
Ref url: https://github.com/IceClear/CLIP-IQA
Re-implmented by: Chaofeng Chen (https://github.com/chaofengc) with the following modification:
- We assemble multiple prompts to improve the results of clipiqa model.
"""
import torch
import torch.nn as nn
import sys
import pyiqa
from pyiqa.archs.arch_util import load_file_from_url
from pyiqa.archs.arch_util import load_pretrained_network
import clip
from .constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from .clip_model import load
default_model_urls = {
'clipiqa+': 'https://github.com/chaofengc/IQA-PyTorch/releases/download/v0.1-weights/CLIP-IQA+_learned_prompts-603f3273.pth',
'clipiqa+_rn50_512': 'https://github.com/chaofengc/IQA-PyTorch/releases/download/v0.1-weights/CLIPIQA+_RN50_512-89f5d940.pth',
'clipiqa+_vitL14_512': 'https://github.com/chaofengc/IQA-PyTorch/releases/download/v0.1-weights/CLIPIQA+_ViTL14_512-e66488f2.pth',
}
class PromptLearner(nn.Module):
"""
Disclaimer:
This implementation follows exactly the official codes in: https://github.com/IceClear/CLIP-IQA. We have no idea why some tricks are implemented like this, which include
1. Using n_ctx prefix characters "X"
2. Appending extra "." at the end
3. Insert the original text embedding at the middle
"""
def __init__(self, clip_model, n_ctx=16) -> None:
super().__init__()
# For the following codes about prompts, we follow the official codes to get the same results
prompt_prefix = " ".join(["X"] * n_ctx) + ' '
init_prompts = [prompt_prefix + 'Good photo..', prompt_prefix + 'Bad photo..']
with torch.no_grad():
txt_token = clip.tokenize(init_prompts)
self.tokenized_prompts = txt_token
init_embedding = clip_model.token_embedding(txt_token)
init_ctx = init_embedding[:, 1: 1 + n_ctx]
self.ctx = nn.Parameter(init_ctx)
self.n_ctx = n_ctx
self.n_cls = len(init_prompts)
self.name_lens = [3, 3] # hard coded length, which does not include the extra "." at the end
self.register_buffer("token_prefix", init_embedding[:, :1, :]) # SOS
self.register_buffer("token_suffix", init_embedding[:, 1 + n_ctx:, :]) # CLS, EOS
def get_prompts_with_middel_class(self,):
ctx = self.ctx.to(self.token_prefix)
if ctx.dim() == 2:
ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1)
half_n_ctx = self.n_ctx // 2
prompts = []
for i in range(self.n_cls):
name_len = self.name_lens[i]
prefix_i = self.token_prefix[i: i + 1, :, :]
class_i = self.token_suffix[i: i + 1, :name_len, :]
suffix_i = self.token_suffix[i: i + 1, name_len:, :]
ctx_i_half1 = ctx[i: i + 1, :half_n_ctx, :]
ctx_i_half2 = ctx[i: i + 1, half_n_ctx:, :]
prompt = torch.cat(
[
prefix_i, # (1, 1, dim)
ctx_i_half1, # (1, n_ctx//2, dim)
class_i, # (1, name_len, dim)
ctx_i_half2, # (1, n_ctx//2, dim)
suffix_i, # (1, *, dim)
],
dim=1,
)
prompts.append(prompt)
prompts = torch.cat(prompts, dim=0)
return prompts
def forward(self, clip_model):
prompts = self.get_prompts_with_middel_class()
# self.get_prompts_with_middel_class
x = prompts + clip_model.positional_embedding.type(clip_model.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = clip_model.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = clip_model.ln_final(x).type(clip_model.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), self.tokenized_prompts.argmax(dim=-1)] @ clip_model.text_projection
return x
class CLIPIQA(nn.Module):
def __init__(self,
model_type='clipiqa+_vitL14_512',
backbone='ViT-L/14',
pretrained=True,
pos_embedding=False,
) -> None:
super().__init__()
self.clip_model = [load(backbone, 'cpu')] # avoid saving clip weights
# Different from original paper, we assemble multiple prompts to improve performance
self.prompt_pairs = clip.tokenize([
'Good image', 'bad image',
'Sharp image', 'blurry image',
'sharp edges', 'blurry edges',
'High resolution image', 'low resolution image',
'Noise-free image', 'noisy image',
])
self.model_type = model_type
self.pos_embedding = pos_embedding
if 'clipiqa+' in model_type:
self.prompt_learner = PromptLearner(self.clip_model[0])
self.default_mean = torch.Tensor(OPENAI_CLIP_MEAN).view(1, 3, 1, 1)
self.default_std = torch.Tensor(OPENAI_CLIP_STD).view(1, 3, 1, 1)
for p in self.clip_model[0].parameters():
p.requires_grad = False
if pretrained and 'clipiqa+' in model_type:
if model_type == 'clipiqa+' and backbone == 'RN50':
self.prompt_learner.ctx.data = torch.load(load_file_from_url(default_model_urls['clipiqa+']))
elif model_type in default_model_urls.keys():
load_pretrained_network(self, default_model_urls[model_type], True, 'params')
else:
raise(f'No pretrained model for {model_type}')
def forward(self, x, multi=False, layer=-1):
# no need to preprocess image here
# as already image is already preprocessed
# x = (x - self.default_mean.to(x)) / self.default_std.to(x)
clip_model = self.clip_model[0].to(x)
if self.model_type == 'clipiqa':
prompts = self.prompt_pairs.to(x.device)
logits_per_image, logits_per_text, image_feature, token_feature = clip_model(x, prompts, pos_embedding=self.pos_embedding)
elif 'clipiqa+' in self.model_type:
# learned_prompt_feature = self.prompt_learner(clip_model)
learned_prompt_feature = 0
logits_per_image, logits_per_text, image_feature, token_feature = clip_model(
x, None, text_features=learned_prompt_feature, pos_embedding=self.pos_embedding)
# probs = logits_per_image.reshape(logits_per_image.shape[0], -1, 2).softmax(dim=-1)
# return probs[..., 0].mean(dim=1, keepdim=True), image_feature
return image_feature, token_feature