|
import copy |
|
import math |
|
from collections import OrderedDict |
|
from typing import Tuple, Union |
|
|
|
import clip |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from timm.models.layers import trunc_normal_ |
|
from torch import nn |
|
from torch.utils.checkpoint import checkpoint_sequential |
|
|
|
|
|
def drop_path(x, drop_prob: float = 0.0, training: bool = False): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, |
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for |
|
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use |
|
'survival rate' as the argument. |
|
""" |
|
if drop_prob == 0.0 or not training: |
|
return x |
|
keep_prob = 1 - drop_prob |
|
shape = (x.shape[0],) + (1,) * ( |
|
x.ndim - 1 |
|
) |
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) |
|
random_tensor.floor_() |
|
output = x.div(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" |
|
|
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16.""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
|
|
|
|
|
|
return super().forward(x) |
|
|
|
|
|
class QuickGELU(nn.Module): |
|
def forward(self, x: torch.Tensor): |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__( |
|
self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, |
|
): |
|
super().__init__() |
|
|
|
self.attn = nn.MultiheadAttention(d_model, n_head,) |
|
self.ln_1 = LayerNorm(d_model) |
|
|
|
self.mlp = nn.Sequential( |
|
OrderedDict( |
|
[ |
|
("c_fc", nn.Linear(d_model, d_model * 4)), |
|
("gelu", QuickGELU()), |
|
("c_proj", nn.Linear(d_model * 4, d_model)), |
|
] |
|
) |
|
) |
|
self.ln_2 = LayerNorm(d_model) |
|
self.attn_mask = attn_mask |
|
|
|
def attention(self, x: torch.Tensor): |
|
self.attn_mask = ( |
|
self.attn_mask.to(dtype=x.dtype, device=x.device) |
|
if self.attn_mask is not None |
|
else None |
|
) |
|
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = x + self.attention(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None |
|
): |
|
super().__init__() |
|
self.width = width |
|
self.layers = layers |
|
self.resblocks = nn.Sequential( |
|
*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)] |
|
) |
|
|
|
def forward(self, x: torch.Tensor): |
|
return self.resblocks(x) |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
input_resolution: int, |
|
patch_size: int, |
|
width: int, |
|
layers: int, |
|
heads: int, |
|
output_dim: int, |
|
): |
|
super().__init__() |
|
self.input_resolution = input_resolution |
|
self.output_dim = output_dim |
|
self.conv1 = nn.Conv2d( |
|
in_channels=3, |
|
out_channels=width, |
|
kernel_size=patch_size, |
|
stride=patch_size, |
|
bias=False, |
|
) |
|
|
|
scale = width ** -0.5 |
|
self.class_embedding = nn.Parameter(scale * torch.randn(width)) |
|
self.positional_embedding = nn.Parameter( |
|
scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width) |
|
) |
|
self.ln_pre = LayerNorm(width) |
|
|
|
self.transformer = Transformer(width, layers, heads) |
|
|
|
self.ln_post = LayerNorm(width) |
|
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = self.conv1(x) |
|
x = x.reshape(x.shape[0], x.shape[1], -1) |
|
x = x.permute(0, 2, 1) |
|
x = torch.cat( |
|
[ |
|
self.class_embedding.to(x.dtype) |
|
+ torch.zeros( |
|
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device |
|
), |
|
x, |
|
], |
|
dim=1, |
|
) |
|
x = x + self.positional_embedding.to(x.dtype) |
|
x = self.ln_pre(x) |
|
|
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
|
|
x = self.ln_post(x[:, 0, :]) |
|
|
|
if self.proj is not None: |
|
x = x @ self.proj |
|
return x |
|
|
|
|
|
class CLIP(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
|
|
image_resolution: int, |
|
vision_layers: Union[Tuple[int, int, int, int], int], |
|
vision_width: int, |
|
vision_patch_size: int, |
|
|
|
context_length: int, |
|
vocab_size: int, |
|
transformer_width: int, |
|
transformer_heads: int, |
|
transformer_layers: int, |
|
): |
|
super().__init__() |
|
|
|
self.context_length = context_length |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def initialize_parameters(self): |
|
nn.init.normal_(self.token_embedding.weight, std=0.02) |
|
nn.init.normal_(self.positional_embedding, std=0.01) |
|
|
|
proj_std = (self.transformer.width ** -0.5) * ( |
|
(2 * self.transformer.layers) ** -0.5 |
|
) |
|
attn_std = self.transformer.width ** -0.5 |
|
fc_std = (2 * self.transformer.width) ** -0.5 |
|
for block in self.transformer.resblocks: |
|
nn.init.normal_(block.attn.in_proj_weight, std=attn_std) |
|
nn.init.normal_(block.attn.out_proj.weight, std=proj_std) |
|
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) |
|
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) |
|
|
|
if self.text_projection is not None: |
|
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) |
|
|
|
def build_attention_mask(self): |
|
|
|
|
|
mask = torch.empty(self.context_length, self.context_length) |
|
mask.fill_(float("-inf")) |
|
mask.triu_(1) |
|
return mask |
|
|
|
@property |
|
def dtype(self): |
|
return self.visual.conv1.weight.dtype |
|
|
|
def encode_image(self, image): |
|
return self.visual(image.type(self.dtype)) |
|
|
|
def encode_text(self, text): |
|
x = self.token_embedding(text).type(self.dtype) |
|
|
|
x = x + self.positional_embedding.type(self.dtype) |
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
x = self.ln_final(x).type(self.dtype) |
|
|
|
|
|
|
|
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection |
|
|
|
return x |
|
|
|
def forward(self, image, text): |
|
image_features = self.encode_image(image) |
|
text_features = self.encode_text(text) |
|
|
|
|
|
image_features = image_features / image_features.norm(dim=1, keepdim=True) |
|
text_features = text_features / text_features.norm(dim=1, keepdim=True) |
|
|
|
|
|
logit_scale = self.logit_scale.exp() |
|
logits_per_image = logit_scale * image_features @ text_features.t() |
|
logits_per_text = logits_per_image.t() |
|
|
|
|
|
return logits_per_image, logits_per_text |
|
|
|
|
|
class CrossFramelAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
d_model: int, |
|
n_head: int, |
|
attn_mask: torch.Tensor = None, |
|
droppath=0.0, |
|
T=0, |
|
): |
|
super().__init__() |
|
self.T = T |
|
|
|
self.message_fc = nn.Linear(d_model, d_model) |
|
self.message_ln = LayerNorm(d_model) |
|
self.message_attn = nn.MultiheadAttention(d_model, n_head,) |
|
|
|
self.attn = nn.MultiheadAttention(d_model, n_head,) |
|
self.ln_1 = LayerNorm(d_model) |
|
|
|
self.drop_path = DropPath(droppath) if droppath > 0.0 else nn.Identity() |
|
self.mlp = nn.Sequential( |
|
OrderedDict( |
|
[ |
|
("c_fc", nn.Linear(d_model, d_model * 4)), |
|
("gelu", QuickGELU()), |
|
("c_proj", nn.Linear(d_model * 4, d_model)), |
|
] |
|
) |
|
) |
|
self.ln_2 = LayerNorm(d_model) |
|
self.attn_mask = attn_mask |
|
|
|
def attention(self, x: torch.Tensor): |
|
self.attn_mask = ( |
|
self.attn_mask.to(dtype=x.dtype, device=x.device) |
|
if self.attn_mask is not None |
|
else None |
|
) |
|
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] |
|
|
|
def forward(self, x): |
|
l, bt, d = x.size() |
|
b = bt // self.T |
|
x = x.view(l, b, self.T, d) |
|
|
|
msg_token = self.message_fc(x[0, :, :, :]) |
|
msg_token = msg_token.view(b, self.T, 1, d) |
|
|
|
msg_token = msg_token.permute(1, 2, 0, 3).view(self.T, b, d) |
|
msg_token = msg_token + self.drop_path( |
|
self.message_attn( |
|
self.message_ln(msg_token), |
|
self.message_ln(msg_token), |
|
self.message_ln(msg_token), |
|
need_weights=False, |
|
)[0] |
|
) |
|
msg_token = msg_token.view(self.T, 1, b, d).permute(1, 2, 0, 3) |
|
|
|
x = torch.cat([x, msg_token], dim=0) |
|
|
|
x = x.view(l + 1, -1, d) |
|
x = x + self.drop_path(self.attention(self.ln_1(x))) |
|
x = x[:l, :, :] |
|
x = x + self.drop_path(self.mlp(self.ln_2(x))) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, |
|
width: int, |
|
layers: int, |
|
heads: int, |
|
attn_mask: torch.Tensor = None, |
|
droppath=None, |
|
use_checkpoint=False, |
|
T=8, |
|
): |
|
super().__init__() |
|
self.use_checkpoint = use_checkpoint |
|
if droppath is None: |
|
droppath = [0.0 for i in range(layers)] |
|
self.width = width |
|
self.layers = layers |
|
|
|
self.resblocks = nn.Sequential( |
|
*[ |
|
CrossFramelAttentionBlock(width, heads, attn_mask, droppath[i], T) |
|
for i in range(layers) |
|
] |
|
) |
|
|
|
def forward(self, x: torch.Tensor): |
|
if not self.use_checkpoint: |
|
return self.resblocks(x) |
|
else: |
|
return checkpoint_sequential(self.resblocks, 3, x) |
|
|
|
|
|
class CrossFrameCommunicationTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
input_resolution: int, |
|
patch_size: int, |
|
width: int, |
|
layers: int, |
|
heads: int, |
|
output_dim: int, |
|
droppath=None, |
|
T=8, |
|
use_checkpoint=False, |
|
): |
|
super().__init__() |
|
self.input_resolution = input_resolution |
|
self.output_dim = output_dim |
|
|
|
self.conv1 = nn.Conv2d( |
|
in_channels=3, |
|
out_channels=width, |
|
kernel_size=patch_size, |
|
stride=patch_size, |
|
bias=False, |
|
) |
|
|
|
scale = width ** -0.5 |
|
self.class_embedding = nn.Parameter(scale * torch.randn(width)) |
|
self.positional_embedding = nn.Parameter( |
|
scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width) |
|
) |
|
self.ln_pre = LayerNorm(width) |
|
|
|
|
|
self.transformer = Transformer( |
|
width, layers, heads, droppath=droppath, use_checkpoint=use_checkpoint, T=T, |
|
) |
|
self.ln_post = LayerNorm(width) |
|
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) |
|
|
|
def init_weights(self): |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = self.conv1(x) |
|
x = x.reshape(x.shape[0], x.shape[1], -1) |
|
x = x.permute(0, 2, 1) |
|
x = torch.cat( |
|
[ |
|
self.class_embedding.to(x.dtype) |
|
+ torch.zeros( |
|
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device |
|
), |
|
x, |
|
], |
|
dim=1, |
|
) |
|
x = x + self.positional_embedding.to(x.dtype) |
|
|
|
x = self.ln_pre(x) |
|
|
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
|
|
cls_x = self.ln_post(x[:, 0, :]) |
|
|
|
if self.proj is not None: |
|
cls_x = cls_x @ self.proj |
|
|
|
return cls_x, x[:, 1:, :] |
|
|
|
|
|
class MulitHeadAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.q_proj = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.k_proj = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.v_proj = nn.Linear(dim, dim, bias=qkv_bias) |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, q, k, v): |
|
B, N, C = q.shape |
|
B, M, C = k.shape |
|
q = ( |
|
self.q_proj(q) |
|
.reshape(B, N, self.num_heads, C // self.num_heads) |
|
.permute(0, 2, 1, 3) |
|
) |
|
k = ( |
|
self.k_proj(k) |
|
.reshape(B, M, self.num_heads, C // self.num_heads) |
|
.permute(0, 2, 1, 3) |
|
) |
|
v = ( |
|
self.v_proj(v) |
|
.reshape(B, M, self.num_heads, C // self.num_heads) |
|
.permute(0, 2, 1, 3) |
|
) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class PromptGeneratorLayer(nn.Module): |
|
def __init__( |
|
self, d_model, nhead, dropout=0.0, |
|
): |
|
super().__init__() |
|
self.cross_attn = MulitHeadAttention(d_model, nhead, proj_drop=dropout) |
|
|
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm3 = nn.LayerNorm(d_model) |
|
|
|
self.dropout = nn.Dropout(dropout) |
|
|
|
self.mlp = nn.Sequential( |
|
nn.Linear(d_model, d_model * 4), |
|
QuickGELU(), |
|
nn.Dropout(dropout), |
|
nn.Linear(d_model * 4, d_model), |
|
) |
|
|
|
def forward(self, x, visual): |
|
q = k = v = self.norm1(x) |
|
x = x + self.cross_attn(q, visual, visual) |
|
x = x + self.dropout(self.mlp(self.norm3(x))) |
|
return x |
|
|
|
|
|
class VideoSpecificPrompt(nn.Module): |
|
def __init__( |
|
self, layers=2, embed_dim=512, alpha=0.1, |
|
): |
|
super().__init__() |
|
self.norm = nn.LayerNorm(embed_dim) |
|
self.decoder = nn.ModuleList( |
|
[PromptGeneratorLayer(embed_dim, embed_dim // 64) for _ in range(layers)] |
|
) |
|
self.alpha = nn.Parameter(torch.ones(embed_dim) * alpha) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward(self, text, visual): |
|
B, N, C = visual.shape |
|
visual = self.norm(visual) |
|
for layer in self.decoder: |
|
text = layer(text, visual) |
|
|
|
|
|
from collections import OrderedDict |
|
|
|
from timm.models.layers import trunc_normal_ |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): |
|
super().__init__() |
|
|
|
self.attn = nn.MultiheadAttention(d_model, n_head) |
|
self.ln_1 = nn.LayerNorm(d_model) |
|
self.mlp = nn.Sequential( |
|
OrderedDict( |
|
[ |
|
("c_fc", nn.Linear(d_model, d_model * 4)), |
|
("gelu", QuickGELU()), |
|
("c_proj", nn.Linear(d_model * 4, d_model)), |
|
] |
|
) |
|
) |
|
self.ln_2 = nn.LayerNorm(d_model) |
|
self.attn_mask = attn_mask |
|
|
|
def attention(self, x: torch.Tensor): |
|
self.attn_mask = ( |
|
self.attn_mask.to(dtype=x.dtype, device=x.device) |
|
if self.attn_mask is not None |
|
else None |
|
) |
|
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = x + self.attention(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
class MultiframeIntegrationTransformer(nn.Module): |
|
def __init__( |
|
self, T, embed_dim=512, layers=1, |
|
): |
|
super().__init__() |
|
self.T = T |
|
transformer_heads = embed_dim // 64 |
|
self.positional_embedding = nn.Parameter(torch.empty(1, T, embed_dim)) |
|
trunc_normal_(self.positional_embedding, std=0.02) |
|
self.resblocks = nn.Sequential( |
|
*[ |
|
ResidualAttentionBlock(d_model=embed_dim, n_head=transformer_heads) |
|
for _ in range(layers) |
|
] |
|
) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Linear,)): |
|
trunc_normal_(m.weight, std=0.02) |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.zeros_(m.bias) |
|
nn.init.ones_(m.weight) |
|
|
|
def forward(self, x): |
|
ori_x = x |
|
x = x + self.positional_embedding |
|
x = x.permute(1, 0, 2) |
|
x = self.resblocks(x) |
|
x = x.permute(1, 0, 2) |
|
x = x.type(ori_x.dtype) + ori_x |
|
|
|
return x.mean(dim=1, keepdim=False) |
|
|
|
|
|
class XCLIP(CLIP): |
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
|
|
image_resolution: int, |
|
vision_layers: Union[Tuple[int, int, int, int], int], |
|
vision_width: int, |
|
vision_patch_size: int, |
|
|
|
context_length: int, |
|
vocab_size: int, |
|
transformer_width: int, |
|
transformer_heads: int, |
|
transformer_layers: int, |
|
|
|
T=8, |
|
droppath=0.0, |
|
mit_layers=1, |
|
|
|
prompts_alpha=1e-4, |
|
prompts_layers=1, |
|
|
|
use_cache=True, |
|
use_checkpoint=False, |
|
): |
|
super().__init__( |
|
embed_dim, |
|
image_resolution, |
|
vision_layers, |
|
vision_width, |
|
vision_patch_size, |
|
context_length, |
|
vocab_size, |
|
transformer_width, |
|
transformer_heads, |
|
transformer_layers, |
|
) |
|
|
|
self.prompts_generator = VideoSpecificPrompt( |
|
layers=prompts_layers, embed_dim=embed_dim, alpha=prompts_alpha, |
|
) |
|
self.use_cache = use_cache |
|
self.mit = MultiframeIntegrationTransformer( |
|
T=T, embed_dim=embed_dim, layers=mit_layers, |
|
) |
|
|
|
dpr = ( |
|
[x.item() for x in torch.linspace(0, droppath, vision_layers)] |
|
if droppath > 0.0 |
|
else None |
|
) |
|
|
|
vision_heads = vision_width // 64 |
|
self.visual = CrossFrameCommunicationTransformer( |
|
input_resolution=image_resolution, |
|
patch_size=vision_patch_size, |
|
width=vision_width, |
|
layers=vision_layers, |
|
heads=vision_heads, |
|
output_dim=embed_dim, |
|
droppath=dpr, |
|
T=T, |
|
use_checkpoint=use_checkpoint, |
|
) |
|
|
|
self.transformer = Transformer( |
|
width=transformer_width, |
|
layers=transformer_layers, |
|
heads=transformer_heads, |
|
attn_mask=self.build_attention_mask(), |
|
) |
|
self.vocab_size = vocab_size |
|
self.token_embedding = nn.Embedding(vocab_size, transformer_width) |
|
self.positional_embedding = nn.Parameter( |
|
torch.empty(self.context_length, transformer_width) |
|
) |
|
self.ln_final = LayerNorm(transformer_width) |
|
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) |
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |
|
|
|
self.cache_text_features = None |
|
self.prompts_visual_ln = LayerNorm(vision_width) |
|
self.prompts_visual_proj = nn.Parameter(torch.randn(vision_width, embed_dim)) |
|
|
|
self.initialize_parameters() |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay_keywords(self): |
|
return {"positional_embedding"} |
|
|
|
def encode_image(self, image): |
|
return self.visual(image) |
|
|
|
def encode_text(self, text): |
|
x = self.token_embedding(text) |
|
eos_indx = text.argmax(dim=-1) |
|
K, N1, C = x.shape |
|
|
|
x = x + self.positional_embedding |
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
x = self.ln_final(x) |
|
|
|
|
|
x = x[torch.arange(x.shape[0]), eos_indx] @ self.text_projection |
|
x = x.reshape(K, -1) |
|
return x |
|
|
|
def encode_video(self, image): |
|
b, t, c, h, w = image.size() |
|
image = image.reshape(-1, c, h, w) |
|
|
|
cls_features, img_features = self.encode_image(image) |
|
img_features = self.prompts_visual_ln(img_features) |
|
img_features = img_features @ self.prompts_visual_proj |
|
|
|
cls_features = cls_features.view(b, t, -1) |
|
img_features = img_features.view(b, t, -1, cls_features.shape[-1]) |
|
|
|
video_features = self.mit(cls_features) |
|
|
|
return video_features, img_features |
|
|
|
def forward(self, image, **kwargs): |
|
image = rearrange(image, "b c t h w -> b t c h w") |
|
video_features, _ = self.encode_video(image) |
|
return video_features.reshape(*video_features.shape, 1, 1, 1) |
|
|
|
def cache_text(self, text): |
|
self.eval() |
|
with torch.no_grad(): |
|
if self.cache_text_features is None: |
|
self.cache_text_features = self.encode_text(text) |
|
self.train() |
|
return self.cache_text_features |
|
|
|
def forward_original(self, image, text): |
|
b = image.shape[0] |
|
video_features, img_features = self.encode_video(image) |
|
img_features = img_features.mean(dim=1, keepdim=False) |
|
|
|
if self.use_cache: |
|
text_features = self.cache_text(text) |
|
else: |
|
text_features = self.encode_text(text) |
|
|
|
text_features = text_features.unsqueeze(0).expand(b, -1, -1) |
|
text_features = text_features + self.prompts_generator( |
|
text_features, img_features |
|
) |
|
|
|
video_features = video_features / video_features.norm(dim=-1, keepdim=True) |
|
text_features = text_features / text_features.norm(dim=-1, keepdim=True) |
|
logit_scale = self.logit_scale.exp() |
|
logits = torch.einsum("bd,bkd->bk", video_features, logit_scale * text_features) |
|
|
|
return logits |
|
|
|
|
|
def build_x_clip_model( |
|
pretrained_path="./pretrained_weights/k400_32_8.pth", |
|
droppath=0.0, |
|
use_checkpoint=False, |
|
logger=None, |
|
prompts_alpha=1e-1, |
|
prompts_layers=2, |
|
use_cache=True, |
|
mit_layers=4, |
|
**kwargs, |
|
): |
|
state_dict = torch.load(pretrained_path, map_location="cpu")["model"] |
|
T = int(pretrained_path.split("_")[-1].split(".")[0]) |
|
print(T) |
|
vit = "visual.proj" in state_dict |
|
|
|
if vit: |
|
vision_width = state_dict["visual.conv1.weight"].shape[0] |
|
vision_layers = len( |
|
[ |
|
k |
|
for k in state_dict.keys() |
|
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight") |
|
] |
|
) |
|
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] |
|
grid_size = round( |
|
(state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5 |
|
) |
|
image_resolution = vision_patch_size * grid_size |
|
else: |
|
counts: list = [ |
|
len( |
|
set( |
|
k.split(".")[2] |
|
for k in state_dict |
|
if k.startswith(f"visual.layer{b}") |
|
) |
|
) |
|
for b in [1, 2, 3, 4] |
|
] |
|
vision_layers = tuple(counts) |
|
|
|
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] |
|
output_width = round( |
|
(state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5 |
|
) |
|
vision_patch_size = None |
|
assert ( |
|
output_width ** 2 + 1 |
|
== state_dict["visual.attnpool.positional_embedding"].shape[0] |
|
) |
|
image_resolution = output_width * 32 |
|
|
|
embed_dim = state_dict["text_projection"].shape[1] |
|
context_length = state_dict["positional_embedding"].shape[0] |
|
vocab_size = state_dict["token_embedding.weight"].shape[0] |
|
transformer_width = state_dict["ln_final.weight"].shape[0] |
|
transformer_heads = transformer_width // 64 |
|
transformer_layers = len( |
|
set( |
|
k.split(".")[2] |
|
for k in state_dict |
|
if k.startswith(f"transformer.resblocks") |
|
) |
|
) |
|
|
|
model = XCLIP( |
|
embed_dim, |
|
image_resolution, |
|
vision_layers, |
|
vision_width, |
|
vision_patch_size, |
|
context_length, |
|
vocab_size, |
|
transformer_width, |
|
transformer_heads, |
|
transformer_layers, |
|
T=T, |
|
droppath=droppath, |
|
mit_layers=mit_layers, |
|
prompts_alpha=prompts_alpha, |
|
prompts_layers=prompts_layers, |
|
use_checkpoint=use_checkpoint, |
|
use_cache=use_cache, |
|
) |
|
|
|
for key in ["input_resolution", "context_length", "vocab_size"]: |
|
if key in state_dict: |
|
del state_dict[key] |
|
|
|
msg = model.load_state_dict(state_dict, strict=False) |
|
|
|
return model.eval() |
|
|