import copy import math from collections import OrderedDict from typing import Tuple, Union import clip import numpy as np import torch import torch.nn.functional as F from einops import rearrange from timm.models.layers import trunc_normal_ from torch import nn from torch.utils.checkpoint import checkpoint_sequential def drop_path(x, drop_prob: float = 0.0, training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * ( x.ndim - 1 ) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): # orig_type = x.dtype # ret = super().forward(x.type(torch.float32)) # return ret.type(orig_type) return super().forward(x) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__( self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, ): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head,) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential( OrderedDict( [ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)), ] ) ) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = ( self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None ) return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__( self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None ): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential( *[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)] ) def forward(self, x: torch.Tensor): return self.resblocks(x) class VisionTransformer(nn.Module): def __init__( self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int, ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d( in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False, ) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter( scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width) ) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) def forward(self, x: torch.Tensor): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat( [ self.class_embedding.to(x.dtype) + torch.zeros( x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device ), x, ], dim=1, ) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_post(x[:, 0, :]) if self.proj is not None: x = x @ self.proj return x class CLIP(nn.Module): def __init__( self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int, ): super().__init__() self.context_length = context_length # vision_heads = vision_width // 64 # self.visual = VisionTransformer( # input_resolution=image_resolution, # patch_size=vision_patch_size, # width=vision_width, # layers=vision_layers, # heads=vision_heads, # output_dim=embed_dim # ) # self.transformer = Transformer( # width=transformer_width, # layers=transformer_layers, # heads=transformer_heads, # attn_mask=self.build_attention_mask() # ) # self.vocab_size = vocab_size # self.token_embedding = nn.Embedding(vocab_size, transformer_width) # self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) # self.ln_final = LayerNorm(transformer_width) # self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) # self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) # self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) proj_std = (self.transformer.width ** -0.5) * ( (2 * self.transformer.layers) ** -0.5 ) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask @property def dtype(self): return self.visual.conv1.weight.dtype def encode_image(self, image): return self.visual(image.type(self.dtype)) def encode_text(self, text): x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding.type(self.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x def forward(self, image, text): image_features = self.encode_image(image) text_features = self.encode_text(text) # normalized features image_features = image_features / image_features.norm(dim=1, keepdim=True) text_features = text_features / text_features.norm(dim=1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logits_per_image.t() # shape = [global_batch_size, global_batch_size] return logits_per_image, logits_per_text class CrossFramelAttentionBlock(nn.Module): def __init__( self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, droppath=0.0, T=0, ): super().__init__() self.T = T self.message_fc = nn.Linear(d_model, d_model) self.message_ln = LayerNorm(d_model) self.message_attn = nn.MultiheadAttention(d_model, n_head,) self.attn = nn.MultiheadAttention(d_model, n_head,) self.ln_1 = LayerNorm(d_model) self.drop_path = DropPath(droppath) if droppath > 0.0 else nn.Identity() self.mlp = nn.Sequential( OrderedDict( [ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)), ] ) ) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = ( self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None ) return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x): l, bt, d = x.size() b = bt // self.T x = x.view(l, b, self.T, d) msg_token = self.message_fc(x[0, :, :, :]) msg_token = msg_token.view(b, self.T, 1, d) msg_token = msg_token.permute(1, 2, 0, 3).view(self.T, b, d) msg_token = msg_token + self.drop_path( self.message_attn( self.message_ln(msg_token), self.message_ln(msg_token), self.message_ln(msg_token), need_weights=False, )[0] ) msg_token = msg_token.view(self.T, 1, b, d).permute(1, 2, 0, 3) x = torch.cat([x, msg_token], dim=0) x = x.view(l + 1, -1, d) x = x + self.drop_path(self.attention(self.ln_1(x))) x = x[:l, :, :] x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__( self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, droppath=None, use_checkpoint=False, T=8, ): super().__init__() self.use_checkpoint = use_checkpoint if droppath is None: droppath = [0.0 for i in range(layers)] self.width = width self.layers = layers self.resblocks = nn.Sequential( *[ CrossFramelAttentionBlock(width, heads, attn_mask, droppath[i], T) for i in range(layers) ] ) def forward(self, x: torch.Tensor): if not self.use_checkpoint: return self.resblocks(x) else: return checkpoint_sequential(self.resblocks, 3, x) class CrossFrameCommunicationTransformer(nn.Module): def __init__( self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int, droppath=None, T=8, use_checkpoint=False, ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d( in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False, ) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter( scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width) ) self.ln_pre = LayerNorm(width) ## Attention Blocks self.transformer = Transformer( width, layers, heads, droppath=droppath, use_checkpoint=use_checkpoint, T=T, ) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) def init_weights(self): self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self, x: torch.Tensor): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat( [ self.class_embedding.to(x.dtype) + torch.zeros( x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device ), x, ], dim=1, ) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) x = self.transformer(x) x = x.permute(1, 0, 2) cls_x = self.ln_post(x[:, 0, :]) if self.proj is not None: cls_x = cls_x @ self.proj return cls_x, x[:, 1:, :] class MulitHeadAttention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.q_proj = nn.Linear(dim, dim, bias=qkv_bias) self.k_proj = nn.Linear(dim, dim, bias=qkv_bias) self.v_proj = nn.Linear(dim, dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, q, k, v): B, N, C = q.shape B, M, C = k.shape q = ( self.q_proj(q) .reshape(B, N, self.num_heads, C // self.num_heads) .permute(0, 2, 1, 3) ) k = ( self.k_proj(k) .reshape(B, M, self.num_heads, C // self.num_heads) .permute(0, 2, 1, 3) ) v = ( self.v_proj(v) .reshape(B, M, self.num_heads, C // self.num_heads) .permute(0, 2, 1, 3) ) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class PromptGeneratorLayer(nn.Module): def __init__( self, d_model, nhead, dropout=0.0, ): super().__init__() self.cross_attn = MulitHeadAttention(d_model, nhead, proj_drop=dropout) self.norm1 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.mlp = nn.Sequential( nn.Linear(d_model, d_model * 4), QuickGELU(), nn.Dropout(dropout), nn.Linear(d_model * 4, d_model), ) def forward(self, x, visual): q = k = v = self.norm1(x) x = x + self.cross_attn(q, visual, visual) x = x + self.dropout(self.mlp(self.norm3(x))) return x class VideoSpecificPrompt(nn.Module): def __init__( self, layers=2, embed_dim=512, alpha=0.1, ): super().__init__() self.norm = nn.LayerNorm(embed_dim) self.decoder = nn.ModuleList( [PromptGeneratorLayer(embed_dim, embed_dim // 64) for _ in range(layers)] ) self.alpha = nn.Parameter(torch.ones(embed_dim) * alpha) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self, text, visual): B, N, C = visual.shape visual = self.norm(visual) for layer in self.decoder: text = layer(text, visual) from collections import OrderedDict from timm.models.layers import trunc_normal_ class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) self.mlp = nn.Sequential( OrderedDict( [ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)), ] ) ) self.ln_2 = nn.LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = ( self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None ) return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class MultiframeIntegrationTransformer(nn.Module): def __init__( self, T, embed_dim=512, layers=1, ): super().__init__() self.T = T transformer_heads = embed_dim // 64 self.positional_embedding = nn.Parameter(torch.empty(1, T, embed_dim)) trunc_normal_(self.positional_embedding, std=0.02) self.resblocks = nn.Sequential( *[ ResidualAttentionBlock(d_model=embed_dim, n_head=transformer_heads) for _ in range(layers) ] ) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Linear,)): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.LayerNorm): nn.init.zeros_(m.bias) nn.init.ones_(m.weight) def forward(self, x): ori_x = x x = x + self.positional_embedding x = x.permute(1, 0, 2) x = self.resblocks(x) x = x.permute(1, 0, 2) x = x.type(ori_x.dtype) + ori_x return x.mean(dim=1, keepdim=False) class XCLIP(CLIP): def __init__( self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int, # video T=8, droppath=0.0, mit_layers=1, # prompt prompts_alpha=1e-4, prompts_layers=1, # other use_cache=True, use_checkpoint=False, ): super().__init__( embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, ) self.prompts_generator = VideoSpecificPrompt( layers=prompts_layers, embed_dim=embed_dim, alpha=prompts_alpha, ) self.use_cache = use_cache self.mit = MultiframeIntegrationTransformer( T=T, embed_dim=embed_dim, layers=mit_layers, ) dpr = ( [x.item() for x in torch.linspace(0, droppath, vision_layers)] if droppath > 0.0 else None ) vision_heads = vision_width // 64 self.visual = CrossFrameCommunicationTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim, droppath=dpr, T=T, use_checkpoint=use_checkpoint, ) self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask(), ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter( torch.empty(self.context_length, transformer_width) ) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.cache_text_features = None self.prompts_visual_ln = LayerNorm(vision_width) self.prompts_visual_proj = nn.Parameter(torch.randn(vision_width, embed_dim)) self.initialize_parameters() @torch.jit.ignore def no_weight_decay_keywords(self): return {"positional_embedding"} def encode_image(self, image): return self.visual(image) def encode_text(self, text): x = self.token_embedding(text) eos_indx = text.argmax(dim=-1) K, N1, C = x.shape x = x + self.positional_embedding x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), eos_indx] @ self.text_projection x = x.reshape(K, -1) return x def encode_video(self, image): b, t, c, h, w = image.size() image = image.reshape(-1, c, h, w) cls_features, img_features = self.encode_image(image) img_features = self.prompts_visual_ln(img_features) img_features = img_features @ self.prompts_visual_proj cls_features = cls_features.view(b, t, -1) img_features = img_features.view(b, t, -1, cls_features.shape[-1]) video_features = self.mit(cls_features) return video_features, img_features def forward(self, image, **kwargs): image = rearrange(image, "b c t h w -> b t c h w") video_features, _ = self.encode_video(image) return video_features.reshape(*video_features.shape, 1, 1, 1) def cache_text(self, text): self.eval() with torch.no_grad(): if self.cache_text_features is None: self.cache_text_features = self.encode_text(text) self.train() return self.cache_text_features def forward_original(self, image, text): b = image.shape[0] video_features, img_features = self.encode_video(image) img_features = img_features.mean(dim=1, keepdim=False) if self.use_cache: text_features = self.cache_text(text) else: text_features = self.encode_text(text) text_features = text_features.unsqueeze(0).expand(b, -1, -1) text_features = text_features + self.prompts_generator( text_features, img_features ) video_features = video_features / video_features.norm(dim=-1, keepdim=True) text_features = text_features / text_features.norm(dim=-1, keepdim=True) logit_scale = self.logit_scale.exp() logits = torch.einsum("bd,bkd->bk", video_features, logit_scale * text_features) return logits def build_x_clip_model( pretrained_path="./pretrained_weights/k400_32_8.pth", droppath=0.0, use_checkpoint=False, logger=None, prompts_alpha=1e-1, prompts_layers=2, use_cache=True, mit_layers=4, **kwargs, ): state_dict = torch.load(pretrained_path, map_location="cpu")["model"] T = int(pretrained_path.split("_")[-1].split(".")[0]) print(T) vit = "visual.proj" in state_dict if vit: vision_width = state_dict["visual.conv1.weight"].shape[0] vision_layers = len( [ k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight") ] ) vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] grid_size = round( (state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5 ) image_resolution = vision_patch_size * grid_size else: counts: list = [ len( set( k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}") ) ) for b in [1, 2, 3, 4] ] vision_layers = tuple(counts) vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] output_width = round( (state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5 ) vision_patch_size = None assert ( output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] ) image_resolution = output_width * 32 embed_dim = state_dict["text_projection"].shape[1] context_length = state_dict["positional_embedding"].shape[0] vocab_size = state_dict["token_embedding.weight"].shape[0] transformer_width = state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len( set( k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks") ) ) model = XCLIP( embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, T=T, droppath=droppath, mit_layers=mit_layers, prompts_alpha=prompts_alpha, prompts_layers=prompts_layers, use_checkpoint=use_checkpoint, use_cache=use_cache, ) for key in ["input_resolution", "context_length", "vocab_size"]: if key in state_dict: del state_dict[key] msg = model.load_state_dict(state_dict, strict=False) return model.eval()