import cv2 import torch import random import numpy as np import spaces import PIL from PIL import Image from typing import Tuple import diffusers from diffusers.utils import load_image from diffusers.models import ControlNetModel from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel from huggingface_hub import hf_hub_download from insightface.app import FaceAnalysis from style_template import styles from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps from controlnet_aux import OpenposeDetector import gradio as gr from depth_anything.dpt import DepthAnything from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet import torch.nn.functional as F from torchvision.transforms import Compose # global variable MAX_SEED = np.iinfo(np.int32).max device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 STYLE_NAMES = list(styles.keys()) DEFAULT_STYLE_NAME = "(No style)" enable_lcm_arg = False # download checkpoints from huggingface_hub import hf_hub_download hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints") hf_hub_download( repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="./checkpoints", ) hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints") # Load face encoder app = FaceAnalysis( name="antelopev2", root="./", providers=["CPUExecutionProvider"], ) app.prepare(ctx_id=0, det_size=(640, 640)) openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval() transform = Compose([ Resize( width=518, height=518, resize_target=False, keep_aspect_ratio=True, ensure_multiple_of=14, resize_method='lower_bound', image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), PrepareForNet(), ]) # Path to InstantID models face_adapter = f"./checkpoints/ip-adapter.bin" controlnet_path = f"./checkpoints/ControlNetModel" # Load pipeline face ControlNetModel controlnet_identitynet = ControlNetModel.from_pretrained( controlnet_path, torch_dtype=dtype ) # controlnet-pose/canny/depth controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0" controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0" controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small" controlnet_pose = ControlNetModel.from_pretrained( controlnet_pose_model, torch_dtype=dtype ).to(device) controlnet_canny = ControlNetModel.from_pretrained( controlnet_canny_model, torch_dtype=dtype ).to(device) controlnet_depth = ControlNetModel.from_pretrained( controlnet_depth_model, torch_dtype=dtype ).to(device) def get_depth_map(image): image = np.array(image) / 255.0 h, w = image.shape[:2] image = transform({'image': image})['image'] image = torch.from_numpy(image).unsqueeze(0).to("cuda") with torch.no_grad(): depth = depth_anything(image) depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 depth = depth.cpu().numpy().astype(np.uint8) depth_image = Image.fromarray(depth) return depth_image def get_canny_image(image, t1=100, t2=200): image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) edges = cv2.Canny(image, t1, t2) return Image.fromarray(edges, "L") controlnet_map = { "pose": controlnet_pose, "canny": controlnet_canny, "depth": controlnet_depth, } controlnet_map_fn = { "pose": openpose, "canny": get_canny_image, "depth": get_depth_map, } pretrained_model_name_or_path = "wangqixun/YamerMIX_v8" pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( pretrained_model_name_or_path, controlnet=[controlnet_identitynet], torch_dtype=dtype, safety_checker=None, feature_extractor=None, ).to(device) pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config( pipe.scheduler.config ) # load and disable LCM pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") pipe.disable_lora() pipe.cuda() pipe.load_ip_adapter_instantid(face_adapter) pipe.image_proj_model.to("cuda") pipe.unet.to("cuda") def toggle_lcm_ui(value): if value: return ( gr.update(minimum=0, maximum=100, step=1, value=5), gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5), ) else: return ( gr.update(minimum=5, maximum=100, step=1, value=30), gr.update(minimum=0.1, maximum=20.0, step=0.1, value=5), ) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def remove_tips(): return gr.update(visible=False) # def get_example(): # case = [ # [ # "./examples/yann-lecun_resize.jpg", # None, # "a man", # "Spring Festival", # "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", # ], # [ # "./examples/musk_resize.jpeg", # "./examples/poses/pose2.jpg", # "a man flying in the sky in Mars", # "Mars", # "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", # ], # [ # "./examples/sam_resize.png", # "./examples/poses/pose4.jpg", # "a man doing a silly pose wearing a suite", # "Jungle", # "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree", # ], # [ # "./examples/schmidhuber_resize.png", # "./examples/poses/pose3.jpg", # "a man sit on a chair", # "Neon", # "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", # ], # [ # "./examples/kaifu_resize.png", # "./examples/poses/pose.jpg", # "a man", # "Vibrant Color", # "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", # ], # ] # return case # def run_for_examples(face_file, pose_file, prompt, style, negative_prompt): # return generate_image( # face_file, # pose_file, # prompt, # negative_prompt, # style, # 20, # num_steps # 0.8, # identitynet_strength_ratio # 0.8, # adapter_strength_ratio # 0.4, # pose_strength # 0.3, # canny_strength # 0.5, # depth_strength # ["pose", "canny"], # controlnet_selection # 5.0, # guidance_scale # 42, # seed # "EulerDiscreteScheduler", # scheduler # False, # enable_LCM # True, # enable_Face_Region # ) def convert_from_cv2_to_image(img: np.ndarray) -> Image: return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) def convert_from_image_to_cv2(img: Image) -> np.ndarray: return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) def resize_img( input_image, max_side=1280, min_side=1024, size=None, pad_to_max_side=False, mode=PIL.Image.BILINEAR, base_pixel_number=64, ): w, h = input_image.size if size is not None: w_resize_new, h_resize_new = size else: ratio = min_side / min(h, w) w, h = round(ratio * w), round(ratio * h) ratio = max_side / max(h, w) input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode) w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number input_image = input_image.resize([w_resize_new, h_resize_new], mode) if pad_to_max_side: res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 offset_x = (max_side - w_resize_new) // 2 offset_y = (max_side - h_resize_new) // 2 res[ offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new ] = np.array(input_image) input_image = Image.fromarray(res) return input_image def apply_style( style_name: str, positive: str, negative: str = "" ) -> Tuple[str, str]: p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) return p.replace("{prompt}", positive), n + " " + negative @spaces.GPU def generate_image( pose_image_path, prompt, negative_prompt, style_name, num_steps, identitynet_strength_ratio, adapter_strength_ratio, pose_strength, canny_strength, depth_strength, controlnet_selection, guidance_scale, seed, scheduler, enable_LCM, enhance_face_region, progress=gr.Progress(track_tqdm=True), ): face_image_path = "./examples/fingicode.jpg" if enable_LCM: pipe.scheduler = diffusers.LCMScheduler.from_config(pipe.scheduler.config) pipe.enable_lora() else: pipe.disable_lora() scheduler_class_name = scheduler.split("-")[0] add_kwargs = {} if len(scheduler.split("-")) > 1: add_kwargs["use_karras_sigmas"] = True if len(scheduler.split("-")) > 2: add_kwargs["algorithm_type"] = "sde-dpmsolver++" scheduler = getattr(diffusers, scheduler_class_name) pipe.scheduler = scheduler.from_config(pipe.scheduler.config, **add_kwargs) if face_image_path is None: raise gr.Error( f"Cannot find any input face image! Please upload the face image" ) if prompt is None: prompt = "a person" # apply the style template prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) face_image = load_image(face_image_path) face_image = resize_img(face_image, max_side=1024) face_image_cv2 = convert_from_image_to_cv2(face_image) height, width, _ = face_image_cv2.shape # Extract face features face_info = app.get(face_image_cv2) if len(face_info) == 0: raise gr.Error( f"Unable to detect a face in the image. Please upload a different photo with a clear face." ) face_info = sorted( face_info, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1], )[ -1 ] # only use the maximum face face_emb = face_info["embedding"] face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"]) img_controlnet = face_image if pose_image_path is not None: pose_image = load_image(pose_image_path) pose_image = resize_img(pose_image, max_side=1024) img_controlnet = pose_image pose_image_cv2 = convert_from_image_to_cv2(pose_image) face_info = app.get(pose_image_cv2) if len(face_info) == 0: raise gr.Error( f"Cannot find any face in the reference image! Please upload another person image" ) face_info = face_info[-1] face_kps = draw_kps(pose_image, face_info["kps"]) width, height = face_kps.size if enhance_face_region: control_mask = np.zeros([height, width, 3]) x1, y1, x2, y2 = face_info["bbox"] x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) control_mask[y1:y2, x1:x2] = 255 control_mask = Image.fromarray(control_mask.astype(np.uint8)) else: control_mask = None if len(controlnet_selection) > 0: controlnet_scales = { "pose": pose_strength, "canny": canny_strength, "depth": depth_strength, } pipe.controlnet = MultiControlNetModel( [controlnet_identitynet] + [controlnet_map[s] for s in controlnet_selection] ) control_scales = [float(identitynet_strength_ratio)] + [ controlnet_scales[s] for s in controlnet_selection ] control_images = [face_kps] + [ controlnet_map_fn[s](img_controlnet).resize((width, height)) for s in controlnet_selection ] else: pipe.controlnet = controlnet_identitynet control_scales = float(identitynet_strength_ratio) control_images = face_kps generator = torch.Generator(device=device).manual_seed(seed) print("Start inference...") print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}") pipe.set_ip_adapter_scale(adapter_strength_ratio) images = pipe( prompt=prompt, negative_prompt=negative_prompt, image_embeds=face_emb, image=control_images, control_mask=control_mask, controlnet_conditioning_scale=control_scales, num_inference_steps=num_steps, guidance_scale=guidance_scale, height=height, width=width, generator=generator, ).images return images[0], gr.update(visible=True) # Description title = r"""