File size: 2,690 Bytes
53a077e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
""" Activations

A collection of activations fn and modules with a common interface so that they can
easily be swapped. All have an `inplace` arg even if not used.

Copyright 2020 Ross Wightman
"""
from torch import nn as nn
from torch.nn import functional as F


def swish(x, inplace: bool = False):
    """Swish - Described originally as SiLU (https://arxiv.org/abs/1702.03118v3)
    and also as Swish (https://arxiv.org/abs/1710.05941).

    TODO Rename to SiLU with addition to PyTorch
    """
    return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid())


class Swish(nn.Module):
    def __init__(self, inplace: bool = False):
        super(Swish, self).__init__()
        self.inplace = inplace

    def forward(self, x):
        return swish(x, self.inplace)


def mish(x, inplace: bool = False):
    """Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
    """
    return x.mul(F.softplus(x).tanh())


class Mish(nn.Module):
    def __init__(self, inplace: bool = False):
        super(Mish, self).__init__()
        self.inplace = inplace

    def forward(self, x):
        return mish(x, self.inplace)


def sigmoid(x, inplace: bool = False):
    return x.sigmoid_() if inplace else x.sigmoid()


# PyTorch has this, but not with a consistent inplace argmument interface
class Sigmoid(nn.Module):
    def __init__(self, inplace: bool = False):
        super(Sigmoid, self).__init__()
        self.inplace = inplace

    def forward(self, x):
        return x.sigmoid_() if self.inplace else x.sigmoid()


def tanh(x, inplace: bool = False):
    return x.tanh_() if inplace else x.tanh()


# PyTorch has this, but not with a consistent inplace argmument interface
class Tanh(nn.Module):
    def __init__(self, inplace: bool = False):
        super(Tanh, self).__init__()
        self.inplace = inplace

    def forward(self, x):
        return x.tanh_() if self.inplace else x.tanh()


def hard_swish(x, inplace: bool = False):
    inner = F.relu6(x + 3.).div_(6.)
    return x.mul_(inner) if inplace else x.mul(inner)


class HardSwish(nn.Module):
    def __init__(self, inplace: bool = False):
        super(HardSwish, self).__init__()
        self.inplace = inplace

    def forward(self, x):
        return hard_swish(x, self.inplace)


def hard_sigmoid(x, inplace: bool = False):
    if inplace:
        return x.add_(3.).clamp_(0., 6.).div_(6.)
    else:
        return F.relu6(x + 3.) / 6.


class HardSigmoid(nn.Module):
    def __init__(self, inplace: bool = False):
        super(HardSigmoid, self).__init__()
        self.inplace = inplace

    def forward(self, x):
        return hard_sigmoid(x, self.inplace)