File size: 12,093 Bytes
53a077e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
""" Conv2D w/ SAME padding, CondConv, MixedConv

A collection of conv layers and padding helpers needed by EfficientNet, MixNet, and
MobileNetV3 models that maintain weight compatibility with original Tensorflow models.

Copyright 2020 Ross Wightman
"""
import collections.abc
import math
from functools import partial
from itertools import repeat
from typing import Tuple, Optional

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from .config import *


# From PyTorch internals
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable):
            return x
        return tuple(repeat(x, n))
    return parse


_single = _ntuple(1)
_pair = _ntuple(2)
_triple = _ntuple(3)
_quadruple = _ntuple(4)


def _is_static_pad(kernel_size, stride=1, dilation=1, **_):
    return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0


def _get_padding(kernel_size, stride=1, dilation=1, **_):
    padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
    return padding


def _calc_same_pad(i: int, k: int, s: int, d: int):
    return max((-(i // -s) - 1) * s + (k - 1) * d + 1 - i, 0)


def _same_pad_arg(input_size, kernel_size, stride, dilation):
    ih, iw = input_size
    kh, kw = kernel_size
    pad_h = _calc_same_pad(ih, kh, stride[0], dilation[0])
    pad_w = _calc_same_pad(iw, kw, stride[1], dilation[1])
    return [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]


def _split_channels(num_chan, num_groups):
    split = [num_chan // num_groups for _ in range(num_groups)]
    split[0] += num_chan - sum(split)
    return split


def conv2d_same(
        x, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, stride: Tuple[int, int] = (1, 1),
        padding: Tuple[int, int] = (0, 0), dilation: Tuple[int, int] = (1, 1), groups: int = 1):
    ih, iw = x.size()[-2:]
    kh, kw = weight.size()[-2:]
    pad_h = _calc_same_pad(ih, kh, stride[0], dilation[0])
    pad_w = _calc_same_pad(iw, kw, stride[1], dilation[1])
    x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
    return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups)


class Conv2dSame(nn.Conv2d):
    """ Tensorflow like 'SAME' convolution wrapper for 2D convolutions
    """

    # pylint: disable=unused-argument
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True):
        super(Conv2dSame, self).__init__(
            in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)

    def forward(self, x):
        return conv2d_same(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)


class Conv2dSameExport(nn.Conv2d):
    """ ONNX export friendly Tensorflow like 'SAME' convolution wrapper for 2D convolutions

    NOTE: This does not currently work with torch.jit.script
    """

    # pylint: disable=unused-argument
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True):
        super(Conv2dSameExport, self).__init__(
            in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
        self.pad = None
        self.pad_input_size = (0, 0)

    def forward(self, x):
        input_size = x.size()[-2:]
        if self.pad is None:
            pad_arg = _same_pad_arg(input_size, self.weight.size()[-2:], self.stride, self.dilation)
            self.pad = nn.ZeroPad2d(pad_arg)
            self.pad_input_size = input_size

        if self.pad is not None:
            x = self.pad(x)
        return F.conv2d(
            x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)


def get_padding_value(padding, kernel_size, **kwargs):
    dynamic = False
    if isinstance(padding, str):
        # for any string padding, the padding will be calculated for you, one of three ways
        padding = padding.lower()
        if padding == 'same':
            # TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
            if _is_static_pad(kernel_size, **kwargs):
                # static case, no extra overhead
                padding = _get_padding(kernel_size, **kwargs)
            else:
                # dynamic padding
                padding = 0
                dynamic = True
        elif padding == 'valid':
            # 'VALID' padding, same as padding=0
            padding = 0
        else:
            # Default to PyTorch style 'same'-ish symmetric padding
            padding = _get_padding(kernel_size, **kwargs)
    return padding, dynamic


def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs):
    padding = kwargs.pop('padding', '')
    kwargs.setdefault('bias', False)
    padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs)
    if is_dynamic:
        if is_exportable():
            assert not is_scriptable()
            return Conv2dSameExport(in_chs, out_chs, kernel_size, **kwargs)
        else:
            return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs)
    else:
        return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs)


class MixedConv2d(nn.ModuleDict):
    """ Mixed Grouped Convolution
    Based on MDConv and GroupedConv in MixNet impl:
      https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mixnet/custom_layers.py
    """

    def __init__(self, in_channels, out_channels, kernel_size=3,
                 stride=1, padding='', dilation=1, depthwise=False, **kwargs):
        super(MixedConv2d, self).__init__()

        kernel_size = kernel_size if isinstance(kernel_size, list) else [kernel_size]
        num_groups = len(kernel_size)
        in_splits = _split_channels(in_channels, num_groups)
        out_splits = _split_channels(out_channels, num_groups)
        self.in_channels = sum(in_splits)
        self.out_channels = sum(out_splits)
        for idx, (k, in_ch, out_ch) in enumerate(zip(kernel_size, in_splits, out_splits)):
            conv_groups = out_ch if depthwise else 1
            self.add_module(
                str(idx),
                create_conv2d_pad(
                    in_ch, out_ch, k, stride=stride,
                    padding=padding, dilation=dilation, groups=conv_groups, **kwargs)
            )
        self.splits = in_splits

    def forward(self, x):
        x_split = torch.split(x, self.splits, 1)
        x_out = [conv(x_split[i]) for i, conv in enumerate(self.values())]
        x = torch.cat(x_out, 1)
        return x


def get_condconv_initializer(initializer, num_experts, expert_shape):
    def condconv_initializer(weight):
        """CondConv initializer function."""
        num_params = np.prod(expert_shape)
        if (len(weight.shape) != 2 or weight.shape[0] != num_experts or
                weight.shape[1] != num_params):
            raise (ValueError(
                'CondConv variables must have shape [num_experts, num_params]'))
        for i in range(num_experts):
            initializer(weight[i].view(expert_shape))
    return condconv_initializer


class CondConv2d(nn.Module):
    """ Conditional Convolution
    Inspired by: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/condconv/condconv_layers.py

    Grouped convolution hackery for parallel execution of the per-sample kernel filters inspired by this discussion:
    https://github.com/pytorch/pytorch/issues/17983
    """
    __constants__ = ['bias', 'in_channels', 'out_channels', 'dynamic_padding']

    def __init__(self, in_channels, out_channels, kernel_size=3,
                 stride=1, padding='', dilation=1, groups=1, bias=False, num_experts=4):
        super(CondConv2d, self).__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = _pair(stride)
        padding_val, is_padding_dynamic = get_padding_value(
            padding, kernel_size, stride=stride, dilation=dilation)
        self.dynamic_padding = is_padding_dynamic  # if in forward to work with torchscript
        self.padding = _pair(padding_val)
        self.dilation = _pair(dilation)
        self.groups = groups
        self.num_experts = num_experts

        self.weight_shape = (self.out_channels, self.in_channels // self.groups) + self.kernel_size
        weight_num_param = 1
        for wd in self.weight_shape:
            weight_num_param *= wd
        self.weight = torch.nn.Parameter(torch.Tensor(self.num_experts, weight_num_param))

        if bias:
            self.bias_shape = (self.out_channels,)
            self.bias = torch.nn.Parameter(torch.Tensor(self.num_experts, self.out_channels))
        else:
            self.register_parameter('bias', None)

        self.reset_parameters()

    def reset_parameters(self):
        init_weight = get_condconv_initializer(
            partial(nn.init.kaiming_uniform_, a=math.sqrt(5)), self.num_experts, self.weight_shape)
        init_weight(self.weight)
        if self.bias is not None:
            fan_in = np.prod(self.weight_shape[1:])
            bound = 1 / math.sqrt(fan_in)
            init_bias = get_condconv_initializer(
                partial(nn.init.uniform_, a=-bound, b=bound), self.num_experts, self.bias_shape)
            init_bias(self.bias)

    def forward(self, x, routing_weights):
        B, C, H, W = x.shape
        weight = torch.matmul(routing_weights, self.weight)
        new_weight_shape = (B * self.out_channels, self.in_channels // self.groups) + self.kernel_size
        weight = weight.view(new_weight_shape)
        bias = None
        if self.bias is not None:
            bias = torch.matmul(routing_weights, self.bias)
            bias = bias.view(B * self.out_channels)
        # move batch elements with channels so each batch element can be efficiently convolved with separate kernel
        x = x.view(1, B * C, H, W)
        if self.dynamic_padding:
            out = conv2d_same(
                x, weight, bias, stride=self.stride, padding=self.padding,
                dilation=self.dilation, groups=self.groups * B)
        else:
            out = F.conv2d(
                x, weight, bias, stride=self.stride, padding=self.padding,
                dilation=self.dilation, groups=self.groups * B)
        out = out.permute([1, 0, 2, 3]).view(B, self.out_channels, out.shape[-2], out.shape[-1])

        # Literal port (from TF definition)
        # x = torch.split(x, 1, 0)
        # weight = torch.split(weight, 1, 0)
        # if self.bias is not None:
        #     bias = torch.matmul(routing_weights, self.bias)
        #     bias = torch.split(bias, 1, 0)
        # else:
        #     bias = [None] * B
        # out = []
        # for xi, wi, bi in zip(x, weight, bias):
        #     wi = wi.view(*self.weight_shape)
        #     if bi is not None:
        #         bi = bi.view(*self.bias_shape)
        #     out.append(self.conv_fn(
        #         xi, wi, bi, stride=self.stride, padding=self.padding,
        #         dilation=self.dilation, groups=self.groups))
        # out = torch.cat(out, 0)
        return out


def select_conv2d(in_chs, out_chs, kernel_size, **kwargs):
    assert 'groups' not in kwargs  # only use 'depthwise' bool arg
    if isinstance(kernel_size, list):
        assert 'num_experts' not in kwargs  # MixNet + CondConv combo not supported currently
        # We're going to use only lists for defining the MixedConv2d kernel groups,
        # ints, tuples, other iterables will continue to pass to normal conv and specify h, w.
        m = MixedConv2d(in_chs, out_chs, kernel_size, **kwargs)
    else:
        depthwise = kwargs.pop('depthwise', False)
        groups = out_chs if depthwise else 1
        if 'num_experts' in kwargs and kwargs['num_experts'] > 0:
            m = CondConv2d(in_chs, out_chs, kernel_size, groups=groups, **kwargs)
        else:
            m = create_conv2d_pad(in_chs, out_chs, kernel_size, groups=groups, **kwargs)
    return m