Stable-X
Update code
9dfa4de
raw
history blame
4.04 kB
# A reimplemented version in public environments by Xiao Fu and Mu Hu
import numpy as np
import torch
from scipy.optimize import minimize
def inter_distances(tensors: torch.Tensor):
"""
To calculate the distance between each two depth maps.
"""
distances = []
for i, j in torch.combinations(torch.arange(tensors.shape[0])):
arr1 = tensors[i : i + 1]
arr2 = tensors[j : j + 1]
distances.append(arr1 - arr2)
dist = torch.concat(distances, dim=0)
return dist
def ensemble_depths(input_images:torch.Tensor,
regularizer_strength: float =0.02,
max_iter: int =2,
tol:float =1e-3,
reduction: str='median',
max_res: int=None):
"""
To ensemble multiple affine-invariant depth images (up to scale and shift),
by aligning estimating the scale and shift
"""
device = input_images.device
dtype = input_images.dtype
np_dtype = np.float32
original_input = input_images.clone()
n_img = input_images.shape[0]
ori_shape = input_images.shape
if max_res is not None:
scale_factor = torch.min(max_res / torch.tensor(ori_shape[-2:]))
if scale_factor < 1:
downscaler = torch.nn.Upsample(scale_factor=scale_factor, mode="nearest")
input_images = downscaler(torch.from_numpy(input_images)).numpy()
# init guess
_min = np.min(input_images.reshape((n_img, -1)).cpu().numpy(), axis=1) # get the min value of each possible depth
_max = np.max(input_images.reshape((n_img, -1)).cpu().numpy(), axis=1) # get the max value of each possible depth
s_init = 1.0 / (_max - _min).reshape((-1, 1, 1)) #(10,1,1) : re-scale'f scale
t_init = (-1 * s_init.flatten() * _min.flatten()).reshape((-1, 1, 1)) #(10,1,1)
x = np.concatenate([s_init, t_init]).reshape(-1).astype(np_dtype) #(20,)
input_images = input_images.to(device)
# objective function
def closure(x):
l = len(x)
s = x[: int(l / 2)]
t = x[int(l / 2) :]
s = torch.from_numpy(s).to(dtype=dtype).to(device)
t = torch.from_numpy(t).to(dtype=dtype).to(device)
transformed_arrays = input_images * s.view((-1, 1, 1)) + t.view((-1, 1, 1))
dists = inter_distances(transformed_arrays)
sqrt_dist = torch.sqrt(torch.mean(dists**2))
if "mean" == reduction:
pred = torch.mean(transformed_arrays, dim=0)
elif "median" == reduction:
pred = torch.median(transformed_arrays, dim=0).values
else:
raise ValueError
near_err = torch.sqrt((0 - torch.min(pred)) ** 2)
far_err = torch.sqrt((1 - torch.max(pred)) ** 2)
err = sqrt_dist + (near_err + far_err) * regularizer_strength
err = err.detach().cpu().numpy().astype(np_dtype)
return err
res = minimize(
closure, x, method="BFGS", tol=tol, options={"maxiter": max_iter, "disp": False}
)
x = res.x
l = len(x)
s = x[: int(l / 2)]
t = x[int(l / 2) :]
# Prediction
s = torch.from_numpy(s).to(dtype=dtype).to(device)
t = torch.from_numpy(t).to(dtype=dtype).to(device)
transformed_arrays = original_input * s.view(-1, 1, 1) + t.view(-1, 1, 1) #[10,H,W]
if "mean" == reduction:
aligned_images = torch.mean(transformed_arrays, dim=0)
std = torch.std(transformed_arrays, dim=0)
uncertainty = std
elif "median" == reduction:
aligned_images = torch.median(transformed_arrays, dim=0).values
# MAD (median absolute deviation) as uncertainty indicator
abs_dev = torch.abs(transformed_arrays - aligned_images)
mad = torch.median(abs_dev, dim=0).values
uncertainty = mad
# Scale and shift to [0, 1]
_min = torch.min(aligned_images)
_max = torch.max(aligned_images)
aligned_images = (aligned_images - _min) / (_max - _min)
uncertainty /= _max - _min
return aligned_images, uncertainty