Stable-X's picture
Fix environment dependency
53a077e
""" Activations
A collection of activations fn and modules with a common interface so that they can
easily be swapped. All have an `inplace` arg even if not used.
Copyright 2020 Ross Wightman
"""
from torch import nn as nn
from torch.nn import functional as F
def swish(x, inplace: bool = False):
"""Swish - Described originally as SiLU (https://arxiv.org/abs/1702.03118v3)
and also as Swish (https://arxiv.org/abs/1710.05941).
TODO Rename to SiLU with addition to PyTorch
"""
return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid())
class Swish(nn.Module):
def __init__(self, inplace: bool = False):
super(Swish, self).__init__()
self.inplace = inplace
def forward(self, x):
return swish(x, self.inplace)
def mish(x, inplace: bool = False):
"""Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
"""
return x.mul(F.softplus(x).tanh())
class Mish(nn.Module):
def __init__(self, inplace: bool = False):
super(Mish, self).__init__()
self.inplace = inplace
def forward(self, x):
return mish(x, self.inplace)
def sigmoid(x, inplace: bool = False):
return x.sigmoid_() if inplace else x.sigmoid()
# PyTorch has this, but not with a consistent inplace argmument interface
class Sigmoid(nn.Module):
def __init__(self, inplace: bool = False):
super(Sigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return x.sigmoid_() if self.inplace else x.sigmoid()
def tanh(x, inplace: bool = False):
return x.tanh_() if inplace else x.tanh()
# PyTorch has this, but not with a consistent inplace argmument interface
class Tanh(nn.Module):
def __init__(self, inplace: bool = False):
super(Tanh, self).__init__()
self.inplace = inplace
def forward(self, x):
return x.tanh_() if self.inplace else x.tanh()
def hard_swish(x, inplace: bool = False):
inner = F.relu6(x + 3.).div_(6.)
return x.mul_(inner) if inplace else x.mul(inner)
class HardSwish(nn.Module):
def __init__(self, inplace: bool = False):
super(HardSwish, self).__init__()
self.inplace = inplace
def forward(self, x):
return hard_swish(x, self.inplace)
def hard_sigmoid(x, inplace: bool = False):
if inplace:
return x.add_(3.).clamp_(0., 6.).div_(6.)
else:
return F.relu6(x + 3.) / 6.
class HardSigmoid(nn.Module):
def __init__(self, inplace: bool = False):
super(HardSigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return hard_sigmoid(x, self.inplace)