Steph1949 commited on
Commit
fe8fc6e
1 Parent(s): 9b7b11b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
4
+
5
+ # Load Whisper model and processor from Hugging Face
6
+ processor = WhisperProcessor.from_pretrained("openai/whisper-base")
7
+ model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base").to("cuda" if torch.cuda.is_available() else "cpu")
8
+
9
+ def transcribe(audio):
10
+ try:
11
+ # Load audio
12
+ audio_input = processor(audio, sampling_rate=16000, return_tensors="pt")
13
+
14
+ # Move to appropriate device
15
+ audio_input = audio_input.input_features.to(model.device)
16
+
17
+ # Generate transcription
18
+ predicted_ids = model.generate(audio_input)
19
+ transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
20
+
21
+ return transcription
22
+ except Exception as e:
23
+ return f"Error: {str(e)}"
24
+
25
+ # Create a Gradio interface
26
+ iface = gr.Interface(
27
+ fn=transcribe,
28
+ inputs=gr.inputs.Audio(source="microphone", type="filepath"),
29
+ outputs="text",
30
+ title="Whisper Transcription",
31
+ description="Upload an audio file and get the transcription using Whisper model."
32
+ )
33
+
34
+ if __name__ == "__main__":
35
+ iface.launch()