File size: 20,009 Bytes
31ba7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c56bf
 
31ba7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88962a5
31ba7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fb173b
 
 
88962a5
31ba7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88962a5
 
 
31ba7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88962a5
31ba7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import os
import sys
import re
import uuid
import tempfile
import json
from argparse import ArgumentParser
from threading import Thread
from queue import Queue

import torch
import torchaudio
import gradio as gr
import whisper
from transformers import (
    WhisperFeatureExtractor, 
    AutoTokenizer, 
    AutoModel,
    AutoModelForCausalLM
)
from transformers.generation.streamers import BaseStreamer
from speech_tokenizer.modeling_whisper import WhisperVQEncoder
from speech_tokenizer.utils import extract_speech_token

# Add local paths
sys.path.insert(0, "./cosyvoice")
sys.path.insert(0, "./third_party/Matcha-TTS")

from flow_inference import AudioDecoder

# RAG imports
from langchain_community.document_loaders import *
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores.faiss import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import joblib

import spaces

# Token streamer for generation
class TokenStreamer(BaseStreamer):
    def __init__(self, skip_prompt: bool = False, timeout=None):
        self.skip_prompt = skip_prompt
        self.token_queue = Queue()
        self.stop_signal = None
        self.next_tokens_are_prompt = True
        self.timeout = timeout

    def put(self, value):
        if len(value.shape) > 1 and value.shape[0] > 1:
            raise ValueError("TextStreamer only supports batch size 1")
        elif len(value.shape) > 1:
            value = value[0]

        if self.skip_prompt and self.next_tokens_are_prompt:
            self.next_tokens_are_prompt = False
            return

        for token in value.tolist():
            self.token_queue.put(token)

    def end(self):
        self.token_queue.put(self.stop_signal)

    def __iter__(self):
        return self

    def __next__(self):
        value = self.token_queue.get(timeout=self.timeout)
        if value == self.stop_signal:
            raise StopIteration()
        else:
            return value

# File loader mapping
LOADER_MAPPING = {
    '.pdf': PyPDFLoader,
    '.txt': TextLoader,
    '.md': UnstructuredMarkdownLoader,
    '.csv': CSVLoader,
    '.jpg': UnstructuredImageLoader,
    '.jpeg': UnstructuredImageLoader,
    '.png': UnstructuredImageLoader,
    '.json': JSONLoader,
    '.html': BSHTMLLoader,
    '.htm': BSHTMLLoader
}

def load_single_file(file_path):
    _, ext = os.path.splitext(file_path)
    ext = ext.lower()
    
    loader_class = LOADER_MAPPING.get(ext)
    if not loader_class:
        print(f"Unsupported file type: {ext}")
        return None
        
    loader = loader_class(file_path)
    docs = list(loader.lazy_load())
    return docs

def load_files(file_paths: list):
    if not file_paths:
        return []
    
    docs = []
    for file_path in tqdm(file_paths):
        print("Loading docs:", file_path)
        loaded_docs = load_single_file(file_path)
        if loaded_docs:
            docs.extend(loaded_docs)
    return docs

def split_text(txt, chunk_size=200, overlap=20):
    if not txt:
        return None
    
    splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
    docs = splitter.split_documents(txt)
    return docs

def create_embedding_model(model_file):
    embedding = HuggingFaceEmbeddings(model_name=model_file, model_kwargs={'trust_remote_code': True})
    return embedding

def save_file_paths(store_path, file_paths):
    joblib.dump(file_paths, f'{store_path}/file_paths.pkl')

def load_file_paths(store_path):
    file_paths_file = f'{store_path}/file_paths.pkl'
    if os.path.exists(file_paths_file):
        return joblib.load(file_paths_file)
    return None

def file_paths_match(store_path, file_paths):
    saved_file_paths = load_file_paths(store_path)
    return saved_file_paths == file_paths

def create_vector_store(docs, store_file, embeddings):
    vector_store = FAISS.from_documents(docs, embeddings)
    vector_store.save_local(store_file)
    return vector_store

def load_vector_store(store_path, embeddings):
    if os.path.exists(store_path):
        vector_store = FAISS.load_local(store_path, embeddings, allow_dangerous_deserialization=True)
        return vector_store
    else:
        return None

def load_or_create_store(store_path, file_paths, embeddings):
    if os.path.exists(store_path) and file_paths_match(store_path, file_paths):
        print("Vector database is consistent with last use, no need to rewrite")
        vector_store = load_vector_store(store_path, embeddings)
        if vector_store:
            return vector_store
    
    print("Rewriting database")
    pages = load_files(file_paths)
    docs = split_text(pages)
    vector_store = create_vector_store(docs, store_path, embeddings)
    save_file_paths(store_path, file_paths)
    return vector_store

def query_vector_store(vector_store: FAISS, query, k=4, relevance_threshold=0.8):
    retriever = vector_store.as_retriever(
        search_type="similarity_score_threshold", 
        search_kwargs={"score_threshold": relevance_threshold, "k": k}
    )
    similar_docs = retriever.invoke(query)
    context = [doc.page_content for doc in similar_docs]
    return context

class ModelWorker:
    def __init__(self, model_path, device='cuda'):
        self.device = device
        self.glm_model = AutoModel.from_pretrained(
            model_path, 
            trust_remote_code=True,
            device=device
        ).to(device).eval()
        self.glm_tokenizer = AutoTokenizer.from_pretrained(
            model_path, 
            trust_remote_code=True
        )

    @torch.inference_mode()
    def generate_stream(self, params):
        prompt = params["prompt"]
        temperature = float(params.get("temperature", 1.0))
        top_p = float(params.get("top_p", 1.0))
        max_new_tokens = int(params.get("max_new_tokens", 256))

        inputs = self.glm_tokenizer([prompt], return_tensors="pt")
        inputs = inputs.to(self.device)
        streamer = TokenStreamer(skip_prompt=True)
        
        thread = Thread(
            target=self.glm_model.generate,
            kwargs=dict(
                **inputs,
                max_new_tokens=int(max_new_tokens),
                temperature=float(temperature),
                top_p=float(top_p),
                streamer=streamer
            )
        )
        thread.start()
        
        for token_id in streamer:
            yield token_id

    @spaces.GPU
    def generate_stream_gate(self, params):
        try:
            for x in self.generate_stream(params):
                yield x
        except Exception as e:
            print("Caught Unknown Error", e)
            ret = "Server Error"
            yield ret

def initialize_embedding_model_and_vector_store(Embedding_Model, store_path, file_paths):
    embedding_model = create_embedding_model(Embedding_Model)
    vector_store = load_or_create_store(store_path, file_paths, embedding_model)
    return vector_store, embedding_model

def handle_file_upload(files):
    if not files:
        return None
    file_paths = [file.name for file in files]
    return file_paths

def reinitialize_database(files, progress=gr.Progress()):
    global vector_store, embedding_model
    
    if not files:
        return "No files uploaded. Please upload files first."
        
    file_paths = [file.name for file in files]
    
    progress(0, desc="Initializing embedding model...")
    embedding_model = create_embedding_model(Embedding_Model)
    
    progress(0.3, desc="Loading documents...")
    pages = load_files(file_paths)
    
    progress(0.5, desc="Splitting text...")
    docs = split_text(pages)
    
    progress(0.7, desc="Creating vector store...")
    vector_store = create_vector_store(docs, store_path, embedding_model)
    save_file_paths(store_path, file_paths)
    
    return "Database reinitialized successfully!"


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int, default="7860")
    parser.add_argument("--flow-path", type=str, default="THUDM/glm-4-voice-decoder")
    parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
    parser.add_argument("--tokenizer-path", type=str, default="THUDM/glm-4-voice-tokenizer")
    # parser.add_argument("--whisper_model", type=str, default="base")
    parser.add_argument("--share", action='store_true')
    args = parser.parse_args()

    # Define model configurations
    flow_config = os.path.join(args.flow_path, "config.yaml")
    flow_checkpoint = os.path.join(args.flow_path, 'flow.pt')
    hift_checkpoint = os.path.join(args.flow_path, 'hift.pt')
    device = "cuda"
    
    # Global variables
    audio_decoder = None
    whisper_model = None
    feature_extractor = None
    glm_model = None
    glm_tokenizer = None
    vector_store = None
    embedding_model = None
    whisper_transcribe_model = None
    model_worker = None

    # RAG configuration
    Embedding_Model = 'intfloat/multilingual-e5-large-instruct'
    file_paths = []
    store_path = './data.faiss'

    def initialize_fn():
        global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer
        global vector_store, embedding_model, whisper_transcribe_model, model_worker
    
        if audio_decoder is not None:
            return
    
        model_worker = ModelWorker(args.model_path, device)
        glm_tokenizer = model_worker.glm_tokenizer
    
        audio_decoder = AudioDecoder(
            config_path=flow_config,
            flow_ckpt_path=flow_checkpoint,
            hift_ckpt_path=hift_checkpoint,
            device=device
        )
    
        whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device)
        feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path)
    
        embedding_model = create_embedding_model(Embedding_Model)
        vector_store = load_or_create_store(store_path, file_paths, embedding_model)
    
        whisper_transcribe_model = whisper.load_model("base")

    def clear_fn():
        return [], [], '', '', '', None, None

    def inference_fn(
            temperature: float,
            top_p: float,
            max_new_token: int,
            input_mode,
            audio_path: str | None,
            input_text: str | None,
            history: list[dict],
            previous_input_tokens: str,
            previous_completion_tokens: str,
    ):
        global whisper_transcribe_model, vector_store
        using_context = False
    
        if input_mode == "audio":
            assert audio_path is not None
            history.append({"role": "user", "content": {"path": audio_path}})
            audio_tokens = extract_speech_token(
                whisper_model, feature_extractor, [audio_path]
            )[0]
            if len(audio_tokens) == 0:
                raise gr.Error("No audio tokens extracted")
            audio_tokens = "".join([f"<|audio_{x}|>" for x in audio_tokens])
            audio_tokens = "<|begin_of_audio|>" + audio_tokens + "<|end_of_audio|>"
            user_input = audio_tokens
            system_prompt = "User will provide you with a speech instruction. Do it step by step."
            
            whisper_result = whisper_transcribe_model.transcribe(audio_path)
            transcribed_text = whisper_result['text']
            context = query_vector_store(vector_store, transcribed_text, 4, 0.7)
        else:
            assert input_text is not None
            history.append({"role": "user", "content": input_text})
            user_input = input_text
            system_prompt = "User will provide you with a text instruction. Do it step by step."
            context = query_vector_store(vector_store, input_text, 4, 0.7)
            
        if context is not None:
            using_context = True
    
        inputs = previous_input_tokens + previous_completion_tokens
        inputs = inputs.strip()
        if "<|system|>" not in inputs:
            inputs += f"<|system|>\n{system_prompt}"
        if ("<|context|>" not in inputs) and (using_context == True):
            inputs += f"<|context|> According to the following content: {context}, Please answer the question"
        if "<|context|>" not in inputs and context is not None:
            inputs += f"<|context|>\n{context}"
        inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n"

        with torch.no_grad():
            text_tokens, audio_tokens = [], []
            audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>')
            end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>')
            complete_tokens = []
            prompt_speech_feat = torch.zeros(1, 0, 80).to(device)
            flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(device)
            this_uuid = str(uuid.uuid4())
            tts_speechs = []
            tts_mels = []
            prev_mel = None
            is_finalize = False
            block_size = 10
            
            # Generate tokens using ModelWorker directly instead of API
            for token_id in model_worker.generate_stream_gate({
                "prompt": inputs,
                "temperature": temperature,
                "top_p": top_p,
                "max_new_tokens": max_new_token,
            }):
                if isinstance(token_id, str):  # Error case
                    yield history, inputs, '', token_id, None, None
                    return
                    
                if token_id == end_token_id:
                    is_finalize = True
                if len(audio_tokens) >= block_size or (is_finalize and audio_tokens):
                    block_size = 20
                    tts_token = torch.tensor(audio_tokens, device=device).unsqueeze(0)

                    if prev_mel is not None:
                        prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2)

                    tts_speech, tts_mel = audio_decoder.token2wav(
                        tts_token, 
                        uuid=this_uuid,
                        prompt_token=flow_prompt_speech_token.to(device),
                        prompt_feat=prompt_speech_feat.to(device),
                        finalize=is_finalize
                    )
                    prev_mel = tts_mel

                    tts_speechs.append(tts_speech.squeeze())
                    tts_mels.append(tts_mel)
                    yield history, inputs, '', '', (22050, tts_speech.squeeze().cpu().numpy()), None
                    flow_prompt_speech_token = torch.cat((flow_prompt_speech_token, tts_token), dim=-1)
                    audio_tokens = []
                    
                if not is_finalize:
                    complete_tokens.append(token_id)
                    if token_id >= audio_offset:
                        audio_tokens.append(token_id - audio_offset)
                    else:
                        text_tokens.append(token_id)
        
        # Generate final audio and save
        tts_speech = torch.cat(tts_speechs, dim=-1).cpu()
        complete_text = glm_tokenizer.decode(complete_tokens, spaces_between_special_tokens=False)
        
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
            torchaudio.save(f, tts_speech.unsqueeze(0), 22050, format="wav")
            
        history.append({"role": "assistant", "content": {"path": f.name, "type": "audio/wav"}})
        history.append({"role": "assistant", "content": glm_tokenizer.decode(text_tokens, ignore_special_tokens=False)})
        yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy())

    def update_input_interface(input_mode):
        if input_mode == "audio":
            return [gr.update(visible=True), gr.update(visible=False)]
        else:
            return [gr.update(visible=False), gr.update(visible=True)]

    # Create Gradio interface with new layout
    with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
        with gr.Row():
            # Left column for chat interface
            with gr.Column(scale=2):
                gr.Markdown("## Chat Interface")
                
                with gr.Row():
                    temperature = gr.Number(label="Temperature", value=0.2, minimum=0, maximum=1)
                    top_p = gr.Number(label="Top p", value=0.8, minimum=0, maximum=1)
                    max_new_token = gr.Number(label="Max new tokens", value=2000, minimum=1)

                chatbot = gr.Chatbot(
                    elem_id="chatbot",
                    bubble_full_width=False,
                    type="messages",
                    scale=1,
                    height=500
                )

                with gr.Row():
                    input_mode = gr.Radio(
                        ["audio", "text"],
                        label="Input Mode",
                        value="audio"
                    )
                    
                with gr.Row():
                    audio = gr.Audio(
                        label="Input audio",
                        type='filepath',
                        show_download_button=True,
                        visible=True
                    )
                    text_input = gr.Textbox(
                        label="Input text",
                        placeholder="Enter your text here...",
                        lines=2,
                        visible=False
                    )

                with gr.Row():
                    submit_btn = gr.Button("Submit", variant="primary")
                    reset_btn = gr.Button("Clear")

                output_audio = gr.Audio(
                    label="Play",
                    streaming=True,
                    autoplay=True,
                    show_download_button=False
                )
                complete_audio = gr.Audio(
                    label="Last Output Audio (If Any)",
                    show_download_button=True
                )

            # Right column for database management
            with gr.Column(scale=1):
                gr.Markdown("## Database Management")
                
                file_upload = gr.Files(
                    label="Upload Database Files",
                    file_types=[".txt", ".pdf", ".md", ".csv", ".json", ".html", ".htm"],
                    file_count="multiple"
                )
                
                reinit_btn = gr.Button("Reinitialize Database", variant="secondary")
                status_text = gr.Textbox(label="Status", interactive=False)

        history_state = gr.State([])

        # Setup interaction handlers
        respond = submit_btn.click(
            inference_fn,
            inputs=[
                temperature,
                top_p,
                max_new_token,
                input_mode,
                audio,
                text_input,
                history_state,
            ],
            outputs=[
                history_state,
                output_audio,
                complete_audio
            ]
        )

        respond.then(lambda s: s, [history_state], chatbot)

        reset_btn.click(
            clear_fn,
            outputs=[
                chatbot,
                history_state,
                output_audio,
                complete_audio
            ]
        )
        
        input_mode.change(
            update_input_interface,
            inputs=[input_mode],
            outputs=[audio, text_input]
        )

        # Database reinitialization handler
        reinit_btn.click(
            reinitialize_database,
            inputs=[file_upload],
            outputs=[status_text]
        )

    # Initialize models and launch interface
    initialize_fn()
    demo.launch(
        server_port=args.port,
        server_name=args.host,
        share=args.share
    )