Spaces:
Runtime error
Runtime error
File size: 20,009 Bytes
31ba7c5 52c56bf 31ba7c5 88962a5 31ba7c5 1fb173b 88962a5 31ba7c5 88962a5 31ba7c5 88962a5 31ba7c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
import os
import sys
import re
import uuid
import tempfile
import json
from argparse import ArgumentParser
from threading import Thread
from queue import Queue
import torch
import torchaudio
import gradio as gr
import whisper
from transformers import (
WhisperFeatureExtractor,
AutoTokenizer,
AutoModel,
AutoModelForCausalLM
)
from transformers.generation.streamers import BaseStreamer
from speech_tokenizer.modeling_whisper import WhisperVQEncoder
from speech_tokenizer.utils import extract_speech_token
# Add local paths
sys.path.insert(0, "./cosyvoice")
sys.path.insert(0, "./third_party/Matcha-TTS")
from flow_inference import AudioDecoder
# RAG imports
from langchain_community.document_loaders import *
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores.faiss import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import joblib
import spaces
# Token streamer for generation
class TokenStreamer(BaseStreamer):
def __init__(self, skip_prompt: bool = False, timeout=None):
self.skip_prompt = skip_prompt
self.token_queue = Queue()
self.stop_signal = None
self.next_tokens_are_prompt = True
self.timeout = timeout
def put(self, value):
if len(value.shape) > 1 and value.shape[0] > 1:
raise ValueError("TextStreamer only supports batch size 1")
elif len(value.shape) > 1:
value = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
self.next_tokens_are_prompt = False
return
for token in value.tolist():
self.token_queue.put(token)
def end(self):
self.token_queue.put(self.stop_signal)
def __iter__(self):
return self
def __next__(self):
value = self.token_queue.get(timeout=self.timeout)
if value == self.stop_signal:
raise StopIteration()
else:
return value
# File loader mapping
LOADER_MAPPING = {
'.pdf': PyPDFLoader,
'.txt': TextLoader,
'.md': UnstructuredMarkdownLoader,
'.csv': CSVLoader,
'.jpg': UnstructuredImageLoader,
'.jpeg': UnstructuredImageLoader,
'.png': UnstructuredImageLoader,
'.json': JSONLoader,
'.html': BSHTMLLoader,
'.htm': BSHTMLLoader
}
def load_single_file(file_path):
_, ext = os.path.splitext(file_path)
ext = ext.lower()
loader_class = LOADER_MAPPING.get(ext)
if not loader_class:
print(f"Unsupported file type: {ext}")
return None
loader = loader_class(file_path)
docs = list(loader.lazy_load())
return docs
def load_files(file_paths: list):
if not file_paths:
return []
docs = []
for file_path in tqdm(file_paths):
print("Loading docs:", file_path)
loaded_docs = load_single_file(file_path)
if loaded_docs:
docs.extend(loaded_docs)
return docs
def split_text(txt, chunk_size=200, overlap=20):
if not txt:
return None
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
docs = splitter.split_documents(txt)
return docs
def create_embedding_model(model_file):
embedding = HuggingFaceEmbeddings(model_name=model_file, model_kwargs={'trust_remote_code': True})
return embedding
def save_file_paths(store_path, file_paths):
joblib.dump(file_paths, f'{store_path}/file_paths.pkl')
def load_file_paths(store_path):
file_paths_file = f'{store_path}/file_paths.pkl'
if os.path.exists(file_paths_file):
return joblib.load(file_paths_file)
return None
def file_paths_match(store_path, file_paths):
saved_file_paths = load_file_paths(store_path)
return saved_file_paths == file_paths
def create_vector_store(docs, store_file, embeddings):
vector_store = FAISS.from_documents(docs, embeddings)
vector_store.save_local(store_file)
return vector_store
def load_vector_store(store_path, embeddings):
if os.path.exists(store_path):
vector_store = FAISS.load_local(store_path, embeddings, allow_dangerous_deserialization=True)
return vector_store
else:
return None
def load_or_create_store(store_path, file_paths, embeddings):
if os.path.exists(store_path) and file_paths_match(store_path, file_paths):
print("Vector database is consistent with last use, no need to rewrite")
vector_store = load_vector_store(store_path, embeddings)
if vector_store:
return vector_store
print("Rewriting database")
pages = load_files(file_paths)
docs = split_text(pages)
vector_store = create_vector_store(docs, store_path, embeddings)
save_file_paths(store_path, file_paths)
return vector_store
def query_vector_store(vector_store: FAISS, query, k=4, relevance_threshold=0.8):
retriever = vector_store.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"score_threshold": relevance_threshold, "k": k}
)
similar_docs = retriever.invoke(query)
context = [doc.page_content for doc in similar_docs]
return context
class ModelWorker:
def __init__(self, model_path, device='cuda'):
self.device = device
self.glm_model = AutoModel.from_pretrained(
model_path,
trust_remote_code=True,
device=device
).to(device).eval()
self.glm_tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=True
)
@torch.inference_mode()
def generate_stream(self, params):
prompt = params["prompt"]
temperature = float(params.get("temperature", 1.0))
top_p = float(params.get("top_p", 1.0))
max_new_tokens = int(params.get("max_new_tokens", 256))
inputs = self.glm_tokenizer([prompt], return_tensors="pt")
inputs = inputs.to(self.device)
streamer = TokenStreamer(skip_prompt=True)
thread = Thread(
target=self.glm_model.generate,
kwargs=dict(
**inputs,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature),
top_p=float(top_p),
streamer=streamer
)
)
thread.start()
for token_id in streamer:
yield token_id
@spaces.GPU
def generate_stream_gate(self, params):
try:
for x in self.generate_stream(params):
yield x
except Exception as e:
print("Caught Unknown Error", e)
ret = "Server Error"
yield ret
def initialize_embedding_model_and_vector_store(Embedding_Model, store_path, file_paths):
embedding_model = create_embedding_model(Embedding_Model)
vector_store = load_or_create_store(store_path, file_paths, embedding_model)
return vector_store, embedding_model
def handle_file_upload(files):
if not files:
return None
file_paths = [file.name for file in files]
return file_paths
def reinitialize_database(files, progress=gr.Progress()):
global vector_store, embedding_model
if not files:
return "No files uploaded. Please upload files first."
file_paths = [file.name for file in files]
progress(0, desc="Initializing embedding model...")
embedding_model = create_embedding_model(Embedding_Model)
progress(0.3, desc="Loading documents...")
pages = load_files(file_paths)
progress(0.5, desc="Splitting text...")
docs = split_text(pages)
progress(0.7, desc="Creating vector store...")
vector_store = create_vector_store(docs, store_path, embedding_model)
save_file_paths(store_path, file_paths)
return "Database reinitialized successfully!"
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default="7860")
parser.add_argument("--flow-path", type=str, default="THUDM/glm-4-voice-decoder")
parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
parser.add_argument("--tokenizer-path", type=str, default="THUDM/glm-4-voice-tokenizer")
# parser.add_argument("--whisper_model", type=str, default="base")
parser.add_argument("--share", action='store_true')
args = parser.parse_args()
# Define model configurations
flow_config = os.path.join(args.flow_path, "config.yaml")
flow_checkpoint = os.path.join(args.flow_path, 'flow.pt')
hift_checkpoint = os.path.join(args.flow_path, 'hift.pt')
device = "cuda"
# Global variables
audio_decoder = None
whisper_model = None
feature_extractor = None
glm_model = None
glm_tokenizer = None
vector_store = None
embedding_model = None
whisper_transcribe_model = None
model_worker = None
# RAG configuration
Embedding_Model = 'intfloat/multilingual-e5-large-instruct'
file_paths = []
store_path = './data.faiss'
def initialize_fn():
global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer
global vector_store, embedding_model, whisper_transcribe_model, model_worker
if audio_decoder is not None:
return
model_worker = ModelWorker(args.model_path, device)
glm_tokenizer = model_worker.glm_tokenizer
audio_decoder = AudioDecoder(
config_path=flow_config,
flow_ckpt_path=flow_checkpoint,
hift_ckpt_path=hift_checkpoint,
device=device
)
whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device)
feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path)
embedding_model = create_embedding_model(Embedding_Model)
vector_store = load_or_create_store(store_path, file_paths, embedding_model)
whisper_transcribe_model = whisper.load_model("base")
def clear_fn():
return [], [], '', '', '', None, None
def inference_fn(
temperature: float,
top_p: float,
max_new_token: int,
input_mode,
audio_path: str | None,
input_text: str | None,
history: list[dict],
previous_input_tokens: str,
previous_completion_tokens: str,
):
global whisper_transcribe_model, vector_store
using_context = False
if input_mode == "audio":
assert audio_path is not None
history.append({"role": "user", "content": {"path": audio_path}})
audio_tokens = extract_speech_token(
whisper_model, feature_extractor, [audio_path]
)[0]
if len(audio_tokens) == 0:
raise gr.Error("No audio tokens extracted")
audio_tokens = "".join([f"<|audio_{x}|>" for x in audio_tokens])
audio_tokens = "<|begin_of_audio|>" + audio_tokens + "<|end_of_audio|>"
user_input = audio_tokens
system_prompt = "User will provide you with a speech instruction. Do it step by step."
whisper_result = whisper_transcribe_model.transcribe(audio_path)
transcribed_text = whisper_result['text']
context = query_vector_store(vector_store, transcribed_text, 4, 0.7)
else:
assert input_text is not None
history.append({"role": "user", "content": input_text})
user_input = input_text
system_prompt = "User will provide you with a text instruction. Do it step by step."
context = query_vector_store(vector_store, input_text, 4, 0.7)
if context is not None:
using_context = True
inputs = previous_input_tokens + previous_completion_tokens
inputs = inputs.strip()
if "<|system|>" not in inputs:
inputs += f"<|system|>\n{system_prompt}"
if ("<|context|>" not in inputs) and (using_context == True):
inputs += f"<|context|> According to the following content: {context}, Please answer the question"
if "<|context|>" not in inputs and context is not None:
inputs += f"<|context|>\n{context}"
inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n"
with torch.no_grad():
text_tokens, audio_tokens = [], []
audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>')
end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>')
complete_tokens = []
prompt_speech_feat = torch.zeros(1, 0, 80).to(device)
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(device)
this_uuid = str(uuid.uuid4())
tts_speechs = []
tts_mels = []
prev_mel = None
is_finalize = False
block_size = 10
# Generate tokens using ModelWorker directly instead of API
for token_id in model_worker.generate_stream_gate({
"prompt": inputs,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_token,
}):
if isinstance(token_id, str): # Error case
yield history, inputs, '', token_id, None, None
return
if token_id == end_token_id:
is_finalize = True
if len(audio_tokens) >= block_size or (is_finalize and audio_tokens):
block_size = 20
tts_token = torch.tensor(audio_tokens, device=device).unsqueeze(0)
if prev_mel is not None:
prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2)
tts_speech, tts_mel = audio_decoder.token2wav(
tts_token,
uuid=this_uuid,
prompt_token=flow_prompt_speech_token.to(device),
prompt_feat=prompt_speech_feat.to(device),
finalize=is_finalize
)
prev_mel = tts_mel
tts_speechs.append(tts_speech.squeeze())
tts_mels.append(tts_mel)
yield history, inputs, '', '', (22050, tts_speech.squeeze().cpu().numpy()), None
flow_prompt_speech_token = torch.cat((flow_prompt_speech_token, tts_token), dim=-1)
audio_tokens = []
if not is_finalize:
complete_tokens.append(token_id)
if token_id >= audio_offset:
audio_tokens.append(token_id - audio_offset)
else:
text_tokens.append(token_id)
# Generate final audio and save
tts_speech = torch.cat(tts_speechs, dim=-1).cpu()
complete_text = glm_tokenizer.decode(complete_tokens, spaces_between_special_tokens=False)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
torchaudio.save(f, tts_speech.unsqueeze(0), 22050, format="wav")
history.append({"role": "assistant", "content": {"path": f.name, "type": "audio/wav"}})
history.append({"role": "assistant", "content": glm_tokenizer.decode(text_tokens, ignore_special_tokens=False)})
yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy())
def update_input_interface(input_mode):
if input_mode == "audio":
return [gr.update(visible=True), gr.update(visible=False)]
else:
return [gr.update(visible=False), gr.update(visible=True)]
# Create Gradio interface with new layout
with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
with gr.Row():
# Left column for chat interface
with gr.Column(scale=2):
gr.Markdown("## Chat Interface")
with gr.Row():
temperature = gr.Number(label="Temperature", value=0.2, minimum=0, maximum=1)
top_p = gr.Number(label="Top p", value=0.8, minimum=0, maximum=1)
max_new_token = gr.Number(label="Max new tokens", value=2000, minimum=1)
chatbot = gr.Chatbot(
elem_id="chatbot",
bubble_full_width=False,
type="messages",
scale=1,
height=500
)
with gr.Row():
input_mode = gr.Radio(
["audio", "text"],
label="Input Mode",
value="audio"
)
with gr.Row():
audio = gr.Audio(
label="Input audio",
type='filepath',
show_download_button=True,
visible=True
)
text_input = gr.Textbox(
label="Input text",
placeholder="Enter your text here...",
lines=2,
visible=False
)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
reset_btn = gr.Button("Clear")
output_audio = gr.Audio(
label="Play",
streaming=True,
autoplay=True,
show_download_button=False
)
complete_audio = gr.Audio(
label="Last Output Audio (If Any)",
show_download_button=True
)
# Right column for database management
with gr.Column(scale=1):
gr.Markdown("## Database Management")
file_upload = gr.Files(
label="Upload Database Files",
file_types=[".txt", ".pdf", ".md", ".csv", ".json", ".html", ".htm"],
file_count="multiple"
)
reinit_btn = gr.Button("Reinitialize Database", variant="secondary")
status_text = gr.Textbox(label="Status", interactive=False)
history_state = gr.State([])
# Setup interaction handlers
respond = submit_btn.click(
inference_fn,
inputs=[
temperature,
top_p,
max_new_token,
input_mode,
audio,
text_input,
history_state,
],
outputs=[
history_state,
output_audio,
complete_audio
]
)
respond.then(lambda s: s, [history_state], chatbot)
reset_btn.click(
clear_fn,
outputs=[
chatbot,
history_state,
output_audio,
complete_audio
]
)
input_mode.change(
update_input_interface,
inputs=[input_mode],
outputs=[audio, text_input]
)
# Database reinitialization handler
reinit_btn.click(
reinitialize_database,
inputs=[file_upload],
outputs=[status_text]
)
# Initialize models and launch interface
initialize_fn()
demo.launch(
server_port=args.port,
server_name=args.host,
share=args.share
) |