Spaces:
Runtime error
Runtime error
File size: 37,019 Bytes
31ba7c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 |
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
import json
import tarfile
import json
import io
import pyarrow.parquet as pq
from io import BytesIO
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
import torch.nn.functional as F
import tarfile
import json
import io
import wave
import numpy as np
import torchaudio
import os
import sys
import json
import random
import pickle
import argparse
import itertools
import mmap
import struct
import collections
import shutil
import multiprocessing as mp
from pathlib import Path
from tqdm import tqdm
from collections import defaultdict
from copy import deepcopy
from datetime import datetime
import pickle
from wids import wids
import math
torchaudio.set_audio_backend('soundfile')
AUDIO_FORMAT_SETS = set(['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'])
try:
MAIN_SPK_EMBEDDING=torch.load("/workspace/audio_checkpoints/flow_model/spk_embedding/0909/mean_embedding.pt")
GPT_SPK_EMBEDDING=torch.load("/workspace/audio_checkpoints/flow_model/spk_embedding/0909/spk_mean_embeddings.pt")
except:
MAIN_SPK_EMBEDDING=torch.zeros(1,192)
GPT_SPK_EMBEDDING=torch.zeros(1,192)
def parquet_opener(data, mode='train', tts_data={}):
""" Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert 'src' in sample
url = sample['src']
try:
df = pq.read_table(url).to_pandas()
for i in range(len(df)):
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
continue
sample.update(dict(df.loc[i]))
if mode == 'train':
# NOTE do not return sample directly, must initialize a new dict
yield {**sample}
else:
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
yield {**sample, 'tts_index': index, 'tts_text': text}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
def parse_tar_header(header_bytes):
header = struct.unpack("!100s8s8s8s12s12s8s1s100s6s2s32s32s8s8s155s", header_bytes)
return TarHeader(*header)
TarHeader = collections.namedtuple(
"TarHeader",
[
"name",
"mode",
"uid",
"gid",
"size",
"mtime",
"chksum",
"typeflag",
"linkname",
"magic",
"version",
"uname",
"gname",
"devmajor",
"devminor",
"prefix",
],
)
class MMTar:
def __init__(self, file_path: Path | str):
self.stream = open(file_path, "rb")
self.mmap = mmap.mmap(self.stream.fileno(), 0, access=mmap.ACCESS_READ)
def __del__(self):
try:
self.mmap.close()
self.stream.close()
except: # noqa
pass
def get_at_offset(self, offset) -> tuple[str, bytes]:
header = parse_tar_header(self.mmap[offset : offset + 500])
name = header.name.decode("utf-8").strip("\x00")
start = offset + 512
end = start + int(header.size.decode("utf-8")[:-1], 8)
return name, self.mmap[start:end]
class Tar:
def __init__(self, path: Path):
self.tar = MMTar(path)
indices_path = path.with_suffix(".index")
self.index = pickle.loads(indices_path.read_bytes())
self.name_mapping = {}
for name, offset, _ in self.index:
self.name_mapping[name] = offset
def read(self, name: str) -> bytes:
return self.tar.get_at_offset(self.name_mapping[name])[1]
def cosy_jsonl_opener(data, mode='train', tts_data={}):
""" Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert 'src' in sample
cosy_jsonl_path = sample['src']
tar_file_path=cosy_jsonl_path.replace(".vq0907.jsonl",".tar")
try:
tar_data=Tar(Path(tar_file_path))
with open(cosy_jsonl_path, 'r') as f:
for line in f:
item=json.loads(line)
cosy_token = item['cosy_token']
sample['speech_token']=torch.tensor(cosy_token)
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
# print(item['filename'])
yield {**sample}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
def cosy_jsonl_opener_vq0918_nopool(data, mode='train', tts_data={}):
""" Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert 'src' in sample
cosy_jsonl_path = sample['src']
tar_file_path=cosy_jsonl_path.replace(".vq0918-nopool.jsonl",".tar")
try:
tar_data=Tar(Path(tar_file_path))
with open(cosy_jsonl_path, 'r') as f:
# cosy_data = [json.loads(line) for line in f]
for line in f:
item=json.loads(line)
cosy_token = item['cosy_token']
sample['speech_token']=torch.tensor(cosy_token)
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
# print(item['filename'])
yield {**sample}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
def cosy_jsonl_opener_vq0918_pool2(data, mode='train', tts_data={}):
""" Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert 'src' in sample
cosy_jsonl_path = sample['src']
tar_file_path=cosy_jsonl_path.replace(".vq0918-pool2.jsonl",".tar")
try:
tar_data=Tar(Path(tar_file_path))
with open(cosy_jsonl_path, 'r') as f:
for line in f:
item=json.loads(line)
cosy_token = item['cosy_token']
sample['speech_token']=torch.tensor(cosy_token)
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
yield {**sample}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
def cosy_jsonl_opener_vq0918_pool4(data, mode='train', tts_data={}):
""" Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert 'src' in sample
cosy_jsonl_path = sample['src']
tar_file_path=cosy_jsonl_path.replace(".vq0918-pool4.jsonl",".tar")
try:
tar_data=Tar(Path(tar_file_path))
with open(cosy_jsonl_path, 'r') as f:
# cosy_data = [json.loads(line) for line in f]
for line in f:
item=json.loads(line)
cosy_token = item['cosy_token']
sample['speech_token']=torch.tensor(cosy_token)
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
# print(item['filename'])
yield {**sample}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
def cosy_jsonl_opener_vq0918_pool8(data, mode='train', tts_data={}):
""" Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert 'src' in sample
cosy_jsonl_path = sample['src']
tar_file_path=cosy_jsonl_path.replace(".vq0918-pool8.jsonl",".tar")
try:
tar_data=Tar(Path(tar_file_path))
with open(cosy_jsonl_path, 'r') as f:
# cosy_data = [json.loads(line) for line in f]
for line in f:
item=json.loads(line)
cosy_token = item['cosy_token']
sample['speech_token']=torch.tensor(cosy_token)
sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
# print(item['filename'])
yield {**sample}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
def process_sft_vq0918_pool4(data, mode='train', tts_data={}):
for sample in data:
assert 'src' in sample
token_npy_path = sample['src']
wav_path=token_npy_path.replace(".vq0918-pool4.npy","")
# wav_path,token_npy_path=sample['src'].split(' ')
try:
sample['speech_token']=torch.tensor(np.load(token_npy_path))
sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
if sample['speech'].shape[0] > 1:
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
yield {**sample}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
logging.warning('Failed to open {}'.format(wav_path))
def process_sft_vq0918_pool4_split(data, mode='train',split_token=25, tts_data={}):
for sample in data:
assert 'src' in sample
token_npy_path = sample['src']
wav_path=token_npy_path.replace(".vq0918-pool4.npy","")
# wav_path,token_npy_path=sample['src'].split(' ')
try:
# sample['speech_token']=torch.tensor(np.load(token_npy_path))
# sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
# if sample['speech'].shape[0] > 1:
# sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
# sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
speech_token=torch.tensor(np.load(token_npy_path))
speech,sample_rate= torchaudio.load(wav_path)
# split_speech=int(split_token / 12.5 * sample_rate)
if speech.shape[0] > 1:
speech = speech.mean(dim=0, keepdim=True)
sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
sample['sample_rate']=sample_rate
num_splits = (speech_token.size(0) + split_token - 1) // split_token
for split_id in range(num_splits):
end_token_idx = min((split_id + 1) * split_token, speech_token.size(0))
end_speech_idx=int(np.ceil(end_token_idx / 12.5 * sample_rate))
sample['speech_token']=speech_token[:end_token_idx]
sample['speech']=speech[:,:end_speech_idx]
print(sample['speech_token'].size(),sample['speech'].size())
yield {**sample}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
logging.warning('Failed to open {}'.format(wav_path))
def process_sft_vq0918_pool2(data, mode='train', tts_data={}):
for sample in data:
assert 'src' in sample
token_npy_path = sample['src'].replace(".vq0918-pool4.npy",".vq0918-pool2.npy")
wav_path=token_npy_path.replace(".vq0918-pool2.npy","")
# wav_path,token_npy_path=sample['src'].split(' ')
try:
sample['speech_token']=torch.tensor(np.load(token_npy_path))
sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
if sample['speech'].shape[0] > 1:
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
yield {**sample}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
logging.warning('Failed to open {}'.format(wav_path))
def process_sft_vq0918_pool2_split(data, mode='train',split_token=50, tts_data={}):
for sample in data:
assert 'src' in sample
token_npy_path = sample['src']
wav_path=token_npy_path.replace(".vq0918-pool2.npy","")
# wav_path,token_npy_path=sample['src'].split(' ')
try:
# sample['speech_token']=torch.tensor(np.load(token_npy_path))
# sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
# if sample['speech'].shape[0] > 1:
# sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
# sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
speech_token=torch.tensor(np.load(token_npy_path))
speech,sample_rate= torchaudio.load(wav_path)
# split_speech=int(split_token / 12.5 * sample_rate)
if speech.shape[0] > 1:
speech = speech.mean(dim=0, keepdim=True)
sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
sample['sample_rate']=sample_rate
num_splits = (speech_token.size(0) + split_token - 1) // split_token
for split_id in range(num_splits):
end_token_idx = min((split_id + 1) * split_token, speech_token.size(0))
end_speech_idx=int(np.ceil(end_token_idx / 25 * sample_rate))
sample['speech_token']=speech_token[:end_token_idx]
sample['speech']=speech[:,:end_speech_idx]
print(sample['speech_token'].size(),sample['speech'].size())
yield {**sample}
except Exception as ex:
logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
logging.warning('Failed to open {}'.format(wav_path))
def process_sft_vq0918_pool4_gpt(data, mode='train', tts_data={}):
for sample in data:
assert 'src' in sample
try:
entry=json.loads(sample['src'])
sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
for conv in entry["conversations"]:
if "response_wav" in conv:
wav_path = f"/workspace/audio_data/sft/{conv['response_wav']}"
token_npy_path=wav_path.replace(".wav",".wav.vq0918-pool4.npy")
sample['speech_token']=torch.tensor(np.load(token_npy_path))
sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
if sample['speech'].shape[0] > 1:
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
sample['spk_embedding']=spk_embedding
yield {**sample}
except Exception as ex:
# logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
logging.warning('Failed to open {}'.format(wav_path))
def process_sft_vq0918_pool4_gpt_1010(data, mode='train', tts_data={}):
for sample in data:
assert 'src' in sample
try:
entry=json.loads(sample['src'])
sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
for conv in entry["conversations"]:
if "response_wav" in conv:
wav_path = f"/workspace/audio_data/sft/{conv['response_wav']}"
token_npy_path=wav_path.replace(".wav",".wav.vq0918-pool4.npy")
sample['speech_token']=torch.tensor(np.load(token_npy_path))
sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
if sample['speech'].shape[0] > 1:
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
sample['spk_embedding']=spk_embedding
yield {**sample}
if "prompt_wav" in conv:
wav_path = f"/workspace/audio_data/sft/{conv['response_wav']}"
token_npy_path=wav_path.replace(".wav",".wav.vq0918-pool4.npy")
sample['speech_token']=torch.tensor(np.load(token_npy_path))
sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
if sample['speech'].shape[0] > 1:
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
sample['spk_embedding']=spk_embedding
yield {**sample}
except Exception as ex:
# logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
logging.warning('Failed to open {}'.format(wav_path))
def filter(data,
max_length=10240,
min_length=10,
token_max_length=200,
token_min_length=1,
min_output_input_ratio=0.0005,
max_output_input_ratio=1,
mode='train'):
""" Filter sample according to feature and label length
Inplace operation.
Args::
data: Iterable[{key, wav, label, sample_rate}]
max_length: drop utterance which is greater than max_length(10ms)
min_length: drop utterance which is less than min_length(10ms)
token_max_length: drop utterance which is greater than
token_max_length, especially when use char unit for
english modeling
token_min_length: drop utterance which is
less than token_max_length
min_output_input_ratio: minimal ration of
token_length / feats_length(10ms)
max_output_input_ratio: maximum ration of
token_length / feats_length(10ms)
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
for sample in data:
# sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
# del sample['audio_data']
# sample['wav'] is torch.Tensor, we have 100 frames every second
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
if num_frames < min_length:
continue
if num_frames > max_length:
continue
if len(sample['text_token']) < token_min_length:
continue
if len(sample['text_token']) > token_max_length:
continue
if len(sample['speech_token']) == 0:
continue
if num_frames != 0:
if len(sample['text_token']) / num_frames < min_output_input_ratio:
continue
if len(sample['text_token']) / num_frames > max_output_input_ratio:
continue
yield sample
def filter_speech_token(data,
max_length=10240,
min_length=10,
token_max_length=5000,
token_min_length=1,
min_output_input_ratio=0.0005,
max_output_input_ratio=30,
mode='train'):
""" Filter sample according to feature and label length
Inplace operation.
Args::
data: Iterable[{key, wav, label, sample_rate}]
max_length: drop utterance which is greater than max_length(10ms)
min_length: drop utterance which is less than min_length(10ms)
token_max_length: drop utterance which is greater than
token_max_length, especially when use char unit for
english modeling
token_min_length: drop utterance which is
less than token_max_length
min_output_input_ratio: minimal ration of
token_length / feats_length(10ms)
max_output_input_ratio: maximum ration of
token_length / feats_length(10ms)
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
for sample in data:
# sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
# del sample['audio_data']
# sample['wav'] is torch.Tensor, we have 100 frames every second
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
if num_frames < min_length:
continue
if num_frames > max_length:
continue
if len(sample['speech_token']) < token_min_length:
continue
if len(sample['speech_token']) > token_max_length:
continue
if len(sample['speech_token']) == 0:
continue
if num_frames != 0:
if len(sample['speech_token']) / num_frames < min_output_input_ratio:
continue
if len(sample['speech_token']) / num_frames > max_output_input_ratio:
continue
yield sample
def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
""" Resample data.
Inplace operation.
Args:
data: Iterable[{key, wav, label, sample_rate}]
resample_rate: target resample rate
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
for sample in data:
assert 'sample_rate' in sample
assert 'speech' in sample
sample_rate = sample['sample_rate']
waveform = sample['speech']
if sample_rate != resample_rate:
if sample_rate < min_sample_rate:
continue
sample['sample_rate'] = resample_rate
sample['speech'] = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
max_val = sample['speech'].abs().max()
if max_val > 1:
sample['speech'] /= max_val
yield sample
def compute_fbank(data,
feat_extractor,
mode='train'):
""" Extract fbank
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
"""
for sample in data:
assert 'sample_rate' in sample
assert 'speech' in sample
# assert 'utt' in sample
# assert 'text_token' in sample
waveform = sample['speech']
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
sample['speech_feat'] = mat
del sample['speech']
yield sample
def parse_embedding(data, normalize, mode='train'):
""" Parse utt_embedding/spk_embedding
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
"""
for sample in data:
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
if normalize:
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
yield sample
def tokenize(data, get_tokenizer, allowed_special, mode='train'):
""" Decode text to chars or BPE
Inplace operation
Args:
data: Iterable[{key, wav, txt, sample_rate}]
Returns:
Iterable[{key, wav, txt, tokens, label, sample_rate}]
"""
tokenizer = get_tokenizer()
for sample in data:
assert 'text' in sample
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
if mode == 'inference':
sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
yield sample
def shuffle(data, shuffle_size=10000, mode='train'):
""" Local shuffle the data
Args:
data: Iterable[{key, feat, label}]
shuffle_size: buffer size for shuffle
Returns:
Iterable[{key, feat, label}]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= shuffle_size:
random.shuffle(buf)
for x in buf:
yield x
buf = []
# The sample left over
random.shuffle(buf)
for x in buf:
yield x
def sort(data, sort_size=500, mode='train'):
""" Sort the data by feature length.
Sort is used after shuffle and before batch, so we can group
utts with similar lengths into a batch, and `sort_size` should
be less than `shuffle_size`
Args:
data: Iterable[{key, feat, label}]
sort_size: buffer size for sort
Returns:
Iterable[{key, feat, label}]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= sort_size:
buf.sort(key=lambda x: x['speech_feat'].size(0))
for x in buf:
yield x
buf = []
# The sample left over
buf.sort(key=lambda x: x['speech_feat'].size(0))
for x in buf:
yield x
def static_batch(data, batch_size=16):
""" Static batch the data by `batch_size`
Args:
data: Iterable[{key, feat, label}]
batch_size: batch size
Returns:
Iterable[List[{key, feat, label}]]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= batch_size:
yield buf
buf = []
if len(buf) > 0:
yield buf
def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
""" Dynamic batch the data until the total frames in batch
reach `max_frames_in_batch`
Args:
data: Iterable[{key, feat, label}]
max_frames_in_batch: max_frames in one batch
Returns:
Iterable[List[{key, feat, label}]]
"""
buf = []
longest_frames = 0
for sample in data:
assert 'speech_feat' in sample
assert isinstance(sample['speech_feat'], torch.Tensor)
new_sample_frames = sample['speech_feat'].size(0)
longest_frames = max(longest_frames, new_sample_frames)
frames_after_padding = longest_frames * (len(buf) + 1)
if frames_after_padding > max_frames_in_batch:
yield buf
buf = [sample]
longest_frames = new_sample_frames
else:
buf.append(sample)
if len(buf) > 0:
yield buf
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
""" Wrapper for static/dynamic batch
"""
if mode == 'inference':
return static_batch(data, 1)
else:
if batch_type == 'static':
return static_batch(data, batch_size)
elif batch_type == 'dynamic':
return dynamic_batch(data, max_frames_in_batch)
else:
logging.fatal('Unsupported batch type {}'.format(batch_type))
def padding(data, use_spk_embedding, mode='train'):
""" Padding the data into training data
Args:
data: Iterable[List[{key, feat, label}]]
Returns:
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
"""
for sample in data:
assert isinstance(sample, list)
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
dtype=torch.int32)
order = torch.argsort(speech_feat_len, descending=True)
utts = [sample[i]['utt'] for i in order]
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
speech_token = pad_sequence(speech_token,
batch_first=True,
padding_value=0)
speech_feat = [sample[i]['speech_feat'] for i in order]
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
speech_feat = pad_sequence(speech_feat,
batch_first=True,
padding_value=0)
text = [sample[i]['text'] for i in order]
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
batch = {
"utts": utts,
"speech_token": speech_token,
"speech_token_len": speech_token_len,
"speech_feat": speech_feat,
"speech_feat_len": speech_feat_len,
"text": text,
"text_token": text_token,
"text_token_len": text_token_len,
"utt_embedding": utt_embedding,
"spk_embedding": spk_embedding,
}
if mode == 'inference':
tts_text = [sample[i]['tts_text'] for i in order]
tts_index = [sample[i]['tts_index'] for i in order]
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
batch.update({'tts_text': tts_text,
'tts_index': tts_index,
'tts_text_token': tts_text_token,
'tts_text_token_len': tts_text_token_len})
if use_spk_embedding is True:
batch["embedding"] = batch["spk_embedding"]
else:
batch["embedding"] = batch["utt_embedding"]
yield batch
def padding_speech_token(data, use_spk_embedding, mode='train'):
""" Padding the data into training data
Args:
data: Iterable[List[{key, feat, label}]]
Returns:
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
"""
for sample in data:
assert isinstance(sample, list)
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
dtype=torch.int32)
order = torch.argsort(speech_feat_len, descending=True)
# utts = [sample[i]['utt'] for i in order]
# speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
try:
speech_token = [sample[i]['speech_token'].clone().detach() for i in order]
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
speech_token = pad_sequence(speech_token,
batch_first=True,
padding_value=0)
speech_feat = [sample[i]['speech_feat'] for i in order]
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
speech_feat = pad_sequence(speech_feat,
batch_first=True,
padding_value=0)
batch = {
"speech_token": speech_token,
"speech_token_len": speech_token_len,
"speech_feat": speech_feat,
"speech_feat_len": speech_feat_len,
}
if mode == 'inference':
tts_text = [sample[i]['tts_text'] for i in order]
tts_index = [sample[i]['tts_index'] for i in order]
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
batch.update({'tts_text': tts_text,
'tts_index': tts_index,
'tts_text_token': tts_text_token,
'tts_text_token_len': tts_text_token_len})
# if use_spk_embedding is True:
# batch["embedding"] = batch["spk_embedding"]
# else:
# batch["embedding"] = batch["utt_embedding"]
batch["embedding"]=torch.zeros((batch["speech_feat"].size(0),192),device=batch["speech_feat"].device)
yield batch
except Exception as ex:
logging.warning(' ex info {}'.format(ex))
# assert False
def padding_speech_token_spk(data, use_spk_embedding, mode='train'):
""" Padding the data into training data
Args:
data: Iterable[List[{key, feat, label}]]
Returns:
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
"""
for sample in data:
assert isinstance(sample, list)
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
dtype=torch.int32)
order = torch.argsort(speech_feat_len, descending=True)
# utts = [sample[i]['utt'] for i in order]
# speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
try:
speech_token = [sample[i]['speech_token'].clone().detach() for i in order]
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
speech_token = pad_sequence(speech_token,
batch_first=True,
padding_value=0)
speech_feat = [sample[i]['speech_feat'] for i in order]
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
speech_feat = pad_sequence(speech_feat,
batch_first=True,
padding_value=0)
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
batch = {
"speech_token": speech_token,
"speech_token_len": speech_token_len,
"speech_feat": speech_feat,
"speech_feat_len": speech_feat_len,
"spk_embedding": spk_embedding,
}
if mode == 'inference':
tts_text = [sample[i]['tts_text'] for i in order]
tts_index = [sample[i]['tts_index'] for i in order]
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
batch.update({'tts_text': tts_text,
'tts_index': tts_index,
'tts_text_token': tts_text_token,
'tts_text_token_len': tts_text_token_len})
# if use_spk_embedding is True:
# batch["embedding"] = batch["spk_embedding"]
# else:
# batch["embedding"] = batch["utt_embedding"]
# batch["embedding"]=torch.zeros((batch["speech_feat"].size(0),192),device=batch["speech_feat"].device)
batch["embedding"] = batch["spk_embedding"]
yield batch
except Exception as ex:
logging.warning(' ex info {}'.format(ex))
# assert False |