File size: 37,019 Bytes
31ba7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
import json
import tarfile
import json
import io
import pyarrow.parquet as pq
from io import BytesIO
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
import torch.nn.functional as F
import tarfile
import json
import io
import wave
import numpy as np
import torchaudio
import os
import sys
import json
import random
import pickle
import argparse
import itertools
import mmap
import struct
import collections



import shutil
import multiprocessing as mp
from pathlib import Path

from tqdm import tqdm
from collections import defaultdict
from copy import deepcopy
from datetime import datetime
import pickle

from wids import wids
import math

torchaudio.set_audio_backend('soundfile')

AUDIO_FORMAT_SETS = set(['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'])

try:
    MAIN_SPK_EMBEDDING=torch.load("/workspace/audio_checkpoints/flow_model/spk_embedding/0909/mean_embedding.pt")
    GPT_SPK_EMBEDDING=torch.load("/workspace/audio_checkpoints/flow_model/spk_embedding/0909/spk_mean_embeddings.pt")
except:
    MAIN_SPK_EMBEDDING=torch.zeros(1,192)
    GPT_SPK_EMBEDDING=torch.zeros(1,192)

def parquet_opener(data, mode='train', tts_data={}):
    """ Give url or local file, return file descriptor
        Inplace operation.

        Args:
            data(Iterable[str]): url or local file list

        Returns:
            Iterable[{src, stream}]
    """
    for sample in data:
        assert 'src' in sample
        url = sample['src']
        try:
            df = pq.read_table(url).to_pandas()
            for i in range(len(df)):
                if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
                    continue
                sample.update(dict(df.loc[i]))
                if mode == 'train':
                    # NOTE do not return sample directly, must initialize a new dict
                    yield {**sample}
                else:
                    for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
                        yield {**sample, 'tts_index': index, 'tts_text': text}
        except Exception as ex:
            logging.warning('Failed to open {}, ex info {}'.format(url, ex))




def parse_tar_header(header_bytes):
    header = struct.unpack("!100s8s8s8s12s12s8s1s100s6s2s32s32s8s8s155s", header_bytes)
    return TarHeader(*header)

TarHeader = collections.namedtuple(
    "TarHeader",
    [
        "name",
        "mode",
        "uid",
        "gid",
        "size",
        "mtime",
        "chksum",
        "typeflag",
        "linkname",
        "magic",
        "version",
        "uname",
        "gname",
        "devmajor",
        "devminor",
        "prefix",
    ],
)

class MMTar:
    def __init__(self, file_path: Path | str):
        self.stream = open(file_path, "rb")
        self.mmap = mmap.mmap(self.stream.fileno(), 0, access=mmap.ACCESS_READ)

    def __del__(self):
        try:
            self.mmap.close()
            self.stream.close()
        except:  # noqa
            pass

    def get_at_offset(self, offset) -> tuple[str, bytes]:
        header = parse_tar_header(self.mmap[offset : offset + 500])
        name = header.name.decode("utf-8").strip("\x00")
        start = offset + 512
        end = start + int(header.size.decode("utf-8")[:-1], 8)
        return name, self.mmap[start:end]


class Tar:
    def __init__(self, path: Path):
        self.tar = MMTar(path)
        indices_path = path.with_suffix(".index")
        self.index = pickle.loads(indices_path.read_bytes())
        self.name_mapping = {}
        for name, offset, _ in self.index:
            self.name_mapping[name] = offset

    def read(self, name: str) -> bytes:
        return self.tar.get_at_offset(self.name_mapping[name])[1]

def cosy_jsonl_opener(data, mode='train', tts_data={}):
    """ Give url or local file, return file descriptor
        Inplace operation.

        Args:
            data(Iterable[str]): url or local file list

        Returns:
            Iterable[{src, stream}]
    """
    for sample in data:
        assert 'src' in sample
        cosy_jsonl_path = sample['src']
        tar_file_path=cosy_jsonl_path.replace(".vq0907.jsonl",".tar")
        try:
            tar_data=Tar(Path(tar_file_path))
            with open(cosy_jsonl_path, 'r') as f:
                for line in f:
                    item=json.loads(line)
                    cosy_token = item['cosy_token']
                    sample['speech_token']=torch.tensor(cosy_token)
                    sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
                    # print(item['filename'])
                    yield {**sample}

        except Exception as ex:
            logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))


def cosy_jsonl_opener_vq0918_nopool(data, mode='train', tts_data={}):
    """ Give url or local file, return file descriptor
        Inplace operation.

        Args:
            data(Iterable[str]): url or local file list

        Returns:
            Iterable[{src, stream}]
    """
    for sample in data:
        assert 'src' in sample
        cosy_jsonl_path = sample['src']
        tar_file_path=cosy_jsonl_path.replace(".vq0918-nopool.jsonl",".tar")


        try:
            tar_data=Tar(Path(tar_file_path))
            with open(cosy_jsonl_path, 'r') as f:
                # cosy_data = [json.loads(line) for line in f]
                for line in f:
                    item=json.loads(line)
                    cosy_token = item['cosy_token']
                    sample['speech_token']=torch.tensor(cosy_token)
                    sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
                    # print(item['filename'])
                    yield {**sample}

        except Exception as ex:
            logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))



def cosy_jsonl_opener_vq0918_pool2(data, mode='train', tts_data={}):
    """ Give url or local file, return file descriptor
        Inplace operation.

        Args:
            data(Iterable[str]): url or local file list

        Returns:
            Iterable[{src, stream}]
    """
    for sample in data:
        assert 'src' in sample
        cosy_jsonl_path = sample['src']
        tar_file_path=cosy_jsonl_path.replace(".vq0918-pool2.jsonl",".tar")

        try:
            tar_data=Tar(Path(tar_file_path))
            with open(cosy_jsonl_path, 'r') as f:
                for line in f:
                    item=json.loads(line)
                    cosy_token = item['cosy_token']
                    sample['speech_token']=torch.tensor(cosy_token)
                    sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))

                    yield {**sample}

        except Exception as ex:
            logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))


def cosy_jsonl_opener_vq0918_pool4(data, mode='train', tts_data={}):
    """ Give url or local file, return file descriptor
        Inplace operation.

        Args:
            data(Iterable[str]): url or local file list

        Returns:
            Iterable[{src, stream}]
    """
    for sample in data:
        assert 'src' in sample
        cosy_jsonl_path = sample['src']
        tar_file_path=cosy_jsonl_path.replace(".vq0918-pool4.jsonl",".tar")
        try:
            tar_data=Tar(Path(tar_file_path))
            with open(cosy_jsonl_path, 'r') as f:
                # cosy_data = [json.loads(line) for line in f]
                for line in f:
                    item=json.loads(line)
                    cosy_token = item['cosy_token']
                    sample['speech_token']=torch.tensor(cosy_token)
                    sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
                    # print(item['filename'])
                    yield {**sample}

        except Exception as ex:
            logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))


def cosy_jsonl_opener_vq0918_pool8(data, mode='train', tts_data={}):
    """ Give url or local file, return file descriptor
        Inplace operation.

        Args:
            data(Iterable[str]): url or local file list

        Returns:
            Iterable[{src, stream}]
    """
    for sample in data:
        assert 'src' in sample
        cosy_jsonl_path = sample['src']
        tar_file_path=cosy_jsonl_path.replace(".vq0918-pool8.jsonl",".tar")

        try:
            tar_data=Tar(Path(tar_file_path))
            with open(cosy_jsonl_path, 'r') as f:
                # cosy_data = [json.loads(line) for line in f]
                for line in f:
                    item=json.loads(line)
                    cosy_token = item['cosy_token']
                    sample['speech_token']=torch.tensor(cosy_token)
                    sample['speech'], sample['sample_rate']= torchaudio.load(io.BytesIO(tar_data.read(item['filename'])))
                    # print(item['filename'])
                    yield {**sample}

        except Exception as ex:
            logging.warning('Failed to open {}, ex info {}'.format(cosy_jsonl_path, ex))
         


def process_sft_vq0918_pool4(data, mode='train', tts_data={}):
    for sample in data:
        assert 'src' in sample
        
        token_npy_path = sample['src']
        wav_path=token_npy_path.replace(".vq0918-pool4.npy","")

        # wav_path,token_npy_path=sample['src'].split(' ')
        try:
            sample['speech_token']=torch.tensor(np.load(token_npy_path))
            sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
            if sample['speech'].shape[0] > 1:
                sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
            sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
            yield {**sample}
        except Exception as ex:
            logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
            logging.warning('Failed to open {}'.format(wav_path))


def process_sft_vq0918_pool4_split(data, mode='train',split_token=25, tts_data={}):
    for sample in data:
        assert 'src' in sample
        
        token_npy_path = sample['src']
        wav_path=token_npy_path.replace(".vq0918-pool4.npy","")

        # wav_path,token_npy_path=sample['src'].split(' ')
        try:
            # sample['speech_token']=torch.tensor(np.load(token_npy_path))
            # sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
            # if sample['speech'].shape[0] > 1:
            #     sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
            
            
            # sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)


            speech_token=torch.tensor(np.load(token_npy_path))
            speech,sample_rate= torchaudio.load(wav_path)
            # split_speech=int(split_token / 12.5 * sample_rate)
            if speech.shape[0] > 1:
                speech = speech.mean(dim=0, keepdim=True)

            sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
            sample['sample_rate']=sample_rate

            num_splits = (speech_token.size(0) + split_token - 1) // split_token 

            for split_id in range(num_splits):
                end_token_idx = min((split_id + 1) * split_token, speech_token.size(0))
                end_speech_idx=int(np.ceil(end_token_idx / 12.5 * sample_rate))
                sample['speech_token']=speech_token[:end_token_idx]
                sample['speech']=speech[:,:end_speech_idx]
                print(sample['speech_token'].size(),sample['speech'].size())
                yield {**sample}
        except Exception as ex:
            logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
            logging.warning('Failed to open {}'.format(wav_path))


def process_sft_vq0918_pool2(data, mode='train', tts_data={}):
    for sample in data:
        assert 'src' in sample
        
        token_npy_path = sample['src'].replace(".vq0918-pool4.npy",".vq0918-pool2.npy")
        wav_path=token_npy_path.replace(".vq0918-pool2.npy","")

        # wav_path,token_npy_path=sample['src'].split(' ')
        try:
            sample['speech_token']=torch.tensor(np.load(token_npy_path))
            sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
            if sample['speech'].shape[0] > 1:
                sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)

            sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
            yield {**sample}
        except Exception as ex:
            logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
            logging.warning('Failed to open {}'.format(wav_path))
        

def process_sft_vq0918_pool2_split(data, mode='train',split_token=50, tts_data={}):
    for sample in data:
        assert 'src' in sample
        
        token_npy_path = sample['src']
        wav_path=token_npy_path.replace(".vq0918-pool2.npy","")

        # wav_path,token_npy_path=sample['src'].split(' ')
        try:
            # sample['speech_token']=torch.tensor(np.load(token_npy_path))
            # sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
            # if sample['speech'].shape[0] > 1:
            #     sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
            
            
            # sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)


            speech_token=torch.tensor(np.load(token_npy_path))
            speech,sample_rate= torchaudio.load(wav_path)
            # split_speech=int(split_token / 12.5 * sample_rate)
            if speech.shape[0] > 1:
                speech = speech.mean(dim=0, keepdim=True)

            sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
            sample['sample_rate']=sample_rate

            num_splits = (speech_token.size(0) + split_token - 1) // split_token 

            for split_id in range(num_splits):
                end_token_idx = min((split_id + 1) * split_token, speech_token.size(0))
                end_speech_idx=int(np.ceil(end_token_idx / 25 * sample_rate))
                sample['speech_token']=speech_token[:end_token_idx]
                sample['speech']=speech[:,:end_speech_idx]
                print(sample['speech_token'].size(),sample['speech'].size())
                yield {**sample}
        except Exception as ex:
            logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
            logging.warning('Failed to open {}'.format(wav_path))

def process_sft_vq0918_pool4_gpt(data, mode='train', tts_data={}):
    for sample in data:
        assert 'src' in sample
        try:
            entry=json.loads(sample['src'])
            sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
            
            for conv in entry["conversations"]:
                if "response_wav" in conv:
                    wav_path = f"/workspace/audio_data/sft/{conv['response_wav']}"
                    token_npy_path=wav_path.replace(".wav",".wav.vq0918-pool4.npy")
                    sample['speech_token']=torch.tensor(np.load(token_npy_path))
                    sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
                    if sample['speech'].shape[0] > 1:
                        sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
                    sample['spk_embedding']=spk_embedding
                    yield {**sample}
        except Exception as ex:
            # logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
            logging.warning('Failed to open {}'.format(wav_path))


def process_sft_vq0918_pool4_gpt_1010(data, mode='train', tts_data={}):
    for sample in data:
        assert 'src' in sample
        try:
            entry=json.loads(sample['src'])
            sample['spk_embedding']=torch.zeros_like(MAIN_SPK_EMBEDDING)
            
            for conv in entry["conversations"]:
                if "response_wav" in conv:
                    wav_path = f"/workspace/audio_data/sft/{conv['response_wav']}"
                    token_npy_path=wav_path.replace(".wav",".wav.vq0918-pool4.npy")
                    sample['speech_token']=torch.tensor(np.load(token_npy_path))
                    sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
                    if sample['speech'].shape[0] > 1:
                        sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
                    sample['spk_embedding']=spk_embedding
                    yield {**sample}
                if "prompt_wav" in conv:
                    wav_path = f"/workspace/audio_data/sft/{conv['response_wav']}"
                    token_npy_path=wav_path.replace(".wav",".wav.vq0918-pool4.npy")
                    sample['speech_token']=torch.tensor(np.load(token_npy_path))
                    sample['speech'], sample['sample_rate']= torchaudio.load(wav_path)
                    if sample['speech'].shape[0] > 1:
                        sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
                    sample['spk_embedding']=spk_embedding
                    yield {**sample}
        except Exception as ex:
            # logging.warning('Failed to open {}, ex info {}'.format(wav_path, ex))
            logging.warning('Failed to open {}'.format(wav_path))


def filter(data,
           max_length=10240,
           min_length=10,
           token_max_length=200,
           token_min_length=1,
           min_output_input_ratio=0.0005,
           max_output_input_ratio=1,
           mode='train'):
    """ Filter sample according to feature and label length
        Inplace operation.

        Args::
            data: Iterable[{key, wav, label, sample_rate}]
            max_length: drop utterance which is greater than max_length(10ms)
            min_length: drop utterance which is less than min_length(10ms)
            token_max_length: drop utterance which is greater than
                token_max_length, especially when use char unit for
                english modeling
            token_min_length: drop utterance which is
                less than token_max_length
            min_output_input_ratio: minimal ration of
                token_length / feats_length(10ms)
            max_output_input_ratio: maximum ration of
                token_length / feats_length(10ms)

        Returns:
            Iterable[{key, wav, label, sample_rate}]
    """
    for sample in data:
        # sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
        # del sample['audio_data']
        # sample['wav'] is torch.Tensor, we have 100 frames every second
        num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
        if num_frames < min_length:
            continue
        if num_frames > max_length:
            continue
        if len(sample['text_token']) < token_min_length:
            continue
        if len(sample['text_token']) > token_max_length:
            continue
        if len(sample['speech_token']) == 0:
            continue
        if num_frames != 0:
            if len(sample['text_token']) / num_frames < min_output_input_ratio:
                continue
            if len(sample['text_token']) / num_frames > max_output_input_ratio:
                continue
        yield sample

            
def filter_speech_token(data,
           max_length=10240,
           min_length=10,
           token_max_length=5000,
           token_min_length=1,
           min_output_input_ratio=0.0005,
           max_output_input_ratio=30,
           mode='train'):
    """ Filter sample according to feature and label length
        Inplace operation.

        Args::
            data: Iterable[{key, wav, label, sample_rate}]
            max_length: drop utterance which is greater than max_length(10ms)
            min_length: drop utterance which is less than min_length(10ms)
            token_max_length: drop utterance which is greater than
                token_max_length, especially when use char unit for
                english modeling
            token_min_length: drop utterance which is
                less than token_max_length
            min_output_input_ratio: minimal ration of
                token_length / feats_length(10ms)
            max_output_input_ratio: maximum ration of
                token_length / feats_length(10ms)

        Returns:
            Iterable[{key, wav, label, sample_rate}]
    """
    for sample in data:
        # sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
        # del sample['audio_data']
        # sample['wav'] is torch.Tensor, we have 100 frames every second
        num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
        if num_frames < min_length:
            continue
        if num_frames > max_length:
            continue
        if len(sample['speech_token']) < token_min_length:
            continue
        if len(sample['speech_token']) > token_max_length:
            continue
        if len(sample['speech_token']) == 0:
            continue
        if num_frames != 0:
            if len(sample['speech_token']) / num_frames < min_output_input_ratio:
                continue
            if len(sample['speech_token']) / num_frames > max_output_input_ratio:
                continue
        yield sample


def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
    """ Resample data.
        Inplace operation.

        Args:
            data: Iterable[{key, wav, label, sample_rate}]
            resample_rate: target resample rate

        Returns:
            Iterable[{key, wav, label, sample_rate}]
    """
    for sample in data:
        assert 'sample_rate' in sample
        assert 'speech' in sample
        sample_rate = sample['sample_rate']
        waveform = sample['speech']
        if sample_rate != resample_rate:
            if sample_rate < min_sample_rate:
                continue
            sample['sample_rate'] = resample_rate
            sample['speech'] = torchaudio.transforms.Resample(
                orig_freq=sample_rate, new_freq=resample_rate)(waveform)
        max_val = sample['speech'].abs().max()
        if max_val > 1:
            sample['speech'] /= max_val
        yield sample


def compute_fbank(data,
                  feat_extractor,
                  mode='train'):
    """ Extract fbank

        Args:
            data: Iterable[{key, wav, label, sample_rate}]

        Returns:
            Iterable[{key, feat, label}]
    """
    for sample in data:
        assert 'sample_rate' in sample
        assert 'speech' in sample
        # assert 'utt' in sample
        # assert 'text_token' in sample
        waveform = sample['speech']
        mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
        sample['speech_feat'] = mat
        del sample['speech']
        yield sample


def parse_embedding(data, normalize, mode='train'):
    """ Parse utt_embedding/spk_embedding

        Args:
            data: Iterable[{key, wav, label, sample_rate}]

        Returns:
            Iterable[{key, feat, label}]
    """
    for sample in data:
        sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
        sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
        if normalize:
            sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
            sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
        yield sample


def tokenize(data, get_tokenizer, allowed_special, mode='train'):
    """ Decode text to chars or BPE
        Inplace operation

        Args:
            data: Iterable[{key, wav, txt, sample_rate}]

        Returns:
            Iterable[{key, wav, txt, tokens, label, sample_rate}]
    """
    tokenizer = get_tokenizer()
    for sample in data:
        assert 'text' in sample
        sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
        if mode == 'inference':
            sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
        yield sample


def shuffle(data, shuffle_size=10000, mode='train'):
    """ Local shuffle the data

        Args:
            data: Iterable[{key, feat, label}]
            shuffle_size: buffer size for shuffle

        Returns:
            Iterable[{key, feat, label}]
    """
    buf = []
    for sample in data:
        buf.append(sample)
        if len(buf) >= shuffle_size:
            random.shuffle(buf)
            for x in buf:
                yield x
            buf = []
    # The sample left over
    random.shuffle(buf)
    for x in buf:
        yield x


def sort(data, sort_size=500, mode='train'):
    """ Sort the data by feature length.
        Sort is used after shuffle and before batch, so we can group
        utts with similar lengths into a batch, and `sort_size` should
        be less than `shuffle_size`

        Args:
            data: Iterable[{key, feat, label}]
            sort_size: buffer size for sort

        Returns:
            Iterable[{key, feat, label}]
    """

    buf = []
    for sample in data:
        buf.append(sample)
        if len(buf) >= sort_size:
            buf.sort(key=lambda x: x['speech_feat'].size(0))
            for x in buf:
                yield x
            buf = []
    # The sample left over
    buf.sort(key=lambda x: x['speech_feat'].size(0))
    for x in buf:
        yield x


def static_batch(data, batch_size=16):
    """ Static batch the data by `batch_size`

        Args:
            data: Iterable[{key, feat, label}]
            batch_size: batch size

        Returns:
            Iterable[List[{key, feat, label}]]
    """
    buf = []
    for sample in data:
        buf.append(sample)
        if len(buf) >= batch_size:
            yield buf
            buf = []
    if len(buf) > 0:
        yield buf


def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
    """ Dynamic batch the data until the total frames in batch
        reach `max_frames_in_batch`

        Args:
            data: Iterable[{key, feat, label}]
            max_frames_in_batch: max_frames in one batch

        Returns:
            Iterable[List[{key, feat, label}]]
    """
    buf = []
    longest_frames = 0
    for sample in data:
        assert 'speech_feat' in sample
        assert isinstance(sample['speech_feat'], torch.Tensor)
        new_sample_frames = sample['speech_feat'].size(0)
        longest_frames = max(longest_frames, new_sample_frames)
        frames_after_padding = longest_frames * (len(buf) + 1)
        if frames_after_padding > max_frames_in_batch:
            yield buf
            buf = [sample]
            longest_frames = new_sample_frames
        else:
            buf.append(sample)
    if len(buf) > 0:
        yield buf


def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
    """ Wrapper for static/dynamic batch
    """
    if mode == 'inference':
        return static_batch(data, 1)
    else:
        if batch_type == 'static':
            return static_batch(data, batch_size)
        elif batch_type == 'dynamic':
            return dynamic_batch(data, max_frames_in_batch)
        else:
            logging.fatal('Unsupported batch type {}'.format(batch_type))


def padding(data, use_spk_embedding, mode='train'):
    """ Padding the data into training data

        Args:
            data: Iterable[List[{key, feat, label}]]

        Returns:
            Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
    """
    for sample in data:
        assert isinstance(sample, list)
        speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
                                       dtype=torch.int32)
        order = torch.argsort(speech_feat_len, descending=True)

        utts = [sample[i]['utt'] for i in order]
        speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
        speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
        speech_token = pad_sequence(speech_token,
                                    batch_first=True,
                                    padding_value=0)
        speech_feat = [sample[i]['speech_feat'] for i in order]
        speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
        speech_feat = pad_sequence(speech_feat,
                                   batch_first=True,
                                   padding_value=0)
        text = [sample[i]['text'] for i in order]
        text_token = [torch.tensor(sample[i]['text_token']) for i in order]
        text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
        text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
        utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
        spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
        batch = {
            "utts": utts,
            "speech_token": speech_token,
            "speech_token_len": speech_token_len,
            "speech_feat": speech_feat,
            "speech_feat_len": speech_feat_len,
            "text": text,
            "text_token": text_token,
            "text_token_len": text_token_len,
            "utt_embedding": utt_embedding,
            "spk_embedding": spk_embedding,
        }
        if mode == 'inference':
            tts_text = [sample[i]['tts_text'] for i in order]
            tts_index = [sample[i]['tts_index'] for i in order]
            tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
            tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
            tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
            batch.update({'tts_text': tts_text,
                          'tts_index': tts_index,
                          'tts_text_token': tts_text_token,
                          'tts_text_token_len': tts_text_token_len})
        if use_spk_embedding is True:
            batch["embedding"] = batch["spk_embedding"]
        else:
            batch["embedding"] = batch["utt_embedding"]
        yield batch



def padding_speech_token(data, use_spk_embedding, mode='train'):
    """ Padding the data into training data

        Args:
            data: Iterable[List[{key, feat, label}]]

        Returns:
            Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
    """
    for sample in data:
        assert isinstance(sample, list)
        speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
                                       dtype=torch.int32)
        order = torch.argsort(speech_feat_len, descending=True)

        # utts = [sample[i]['utt'] for i in order]
        # speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
        try:
            speech_token = [sample[i]['speech_token'].clone().detach() for i in order]
            speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
            speech_token = pad_sequence(speech_token,
                                        batch_first=True,
                                        padding_value=0)
            speech_feat = [sample[i]['speech_feat'] for i in order]
            speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
            speech_feat = pad_sequence(speech_feat,
                                    batch_first=True,
                                    padding_value=0)
            batch = {
                "speech_token": speech_token,
                "speech_token_len": speech_token_len,
                "speech_feat": speech_feat,
                "speech_feat_len": speech_feat_len,
            }
            if mode == 'inference':
                tts_text = [sample[i]['tts_text'] for i in order]
                tts_index = [sample[i]['tts_index'] for i in order]
                tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
                tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
                tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
                batch.update({'tts_text': tts_text,
                            'tts_index': tts_index,
                            'tts_text_token': tts_text_token,
                            'tts_text_token_len': tts_text_token_len})
            # if use_spk_embedding is True:
            #     batch["embedding"] = batch["spk_embedding"]
            # else:
            #     batch["embedding"] = batch["utt_embedding"]
            batch["embedding"]=torch.zeros((batch["speech_feat"].size(0),192),device=batch["speech_feat"].device)
            yield batch
        except Exception as ex:
            logging.warning(' ex info {}'.format(ex))
            # assert False



def padding_speech_token_spk(data, use_spk_embedding, mode='train'):
    """ Padding the data into training data

        Args:
            data: Iterable[List[{key, feat, label}]]

        Returns:
            Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
    """
    for sample in data:
        assert isinstance(sample, list)
        speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
                                       dtype=torch.int32)
        order = torch.argsort(speech_feat_len, descending=True)

        # utts = [sample[i]['utt'] for i in order]
        # speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
        try:
            speech_token = [sample[i]['speech_token'].clone().detach() for i in order]
            speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
            speech_token = pad_sequence(speech_token,
                                        batch_first=True,
                                        padding_value=0)
            speech_feat = [sample[i]['speech_feat'] for i in order]
            speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
            speech_feat = pad_sequence(speech_feat,
                                    batch_first=True,
                                    padding_value=0)
            spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
            batch = {
                "speech_token": speech_token,
                "speech_token_len": speech_token_len,
                "speech_feat": speech_feat,
                "speech_feat_len": speech_feat_len,
                "spk_embedding": spk_embedding,
            }
            if mode == 'inference':
                tts_text = [sample[i]['tts_text'] for i in order]
                tts_index = [sample[i]['tts_index'] for i in order]
                tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
                tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
                tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
                batch.update({'tts_text': tts_text,
                            'tts_index': tts_index,
                            'tts_text_token': tts_text_token,
                            'tts_text_token_len': tts_text_token_len})
            # if use_spk_embedding is True:
            #     batch["embedding"] = batch["spk_embedding"]
            # else:
            #     batch["embedding"] = batch["utt_embedding"]
            # batch["embedding"]=torch.zeros((batch["speech_feat"].size(0),192),device=batch["speech_feat"].device)
            batch["embedding"] = batch["spk_embedding"]
            yield batch
        except Exception as ex:
            logging.warning(' ex info {}'.format(ex))
            # assert False