File size: 27,591 Bytes
31ba7c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
import pdb
from functools import reduce, partial
from packaging import version

from einops import rearrange, repeat
from einops.layers.torch import Rearrange
import torch
import torch.nn.functional as F
from torch import nn, einsum
from torch.cuda.amp import autocast
from typing import Callable, Literal

try:
    from flash_attn import flash_attn_func, flash_attn_kvpacked_func
except ImportError as e:
    print(e)
    print('flash_attn not installed, disabling Flash Attention')
    flash_attn_kvpacked_func = None
    flash_attn_func = None

try:
    import natten
except ImportError:
    natten = None


def checkpoint(function, *args, **kwargs):
    kwargs.setdefault("use_reentrant", False)
    return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)


# Copied and modified from https://github.com/lucidrains/x-transformers/blob/main/x_transformers/attend.py under MIT License
# License can be found in LICENSES/LICENSE_XTRANSFORMERS.txt

def create_causal_mask(i, j, device):
    return torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 1)


def or_reduce(masks):
    head, *body = masks
    for rest in body:
        head = head | rest
    return head


# positional embeddings

class AbsolutePositionalEmbedding(nn.Module):
    def __init__(self, dim, max_seq_len):
        super().__init__()
        self.scale = dim ** -0.5
        self.max_seq_len = max_seq_len
        self.emb = nn.Embedding(max_seq_len, dim)

    def forward(self, x, pos=None, seq_start_pos=None):
        seq_len, device = x.shape[1], x.device
        assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'

        if pos is None:
            pos = torch.arange(seq_len, device=device)

        if seq_start_pos is not None:
            pos = (pos - seq_start_pos[..., None]).clamp(min=0)

        pos_emb = self.emb(pos)
        pos_emb = pos_emb * self.scale
        return pos_emb


class ScaledSinusoidalEmbedding(nn.Module):
    def __init__(self, dim, theta=10000):
        super().__init__()
        assert (dim % 2) == 0, 'dimension must be divisible by 2'
        self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)

        half_dim = dim // 2
        freq_seq = torch.arange(half_dim).float() / half_dim
        inv_freq = theta ** -freq_seq
        self.register_buffer('inv_freq', inv_freq, persistent=False)

    def forward(self, x, pos=None, seq_start_pos=None):
        seq_len, device = x.shape[1], x.device

        if pos is None:
            pos = torch.arange(seq_len, device=device)

        if seq_start_pos is not None:
            pos = pos - seq_start_pos[..., None]

        emb = einsum('i, j -> i j', pos, self.inv_freq)
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb * self.scale


class RotaryEmbedding(nn.Module):
    def __init__(
            self,
            dim,
            use_xpos=False,
            scale_base=512,
            interpolation_factor=1.,
            base=10000,
            base_rescale_factor=1.
    ):
        super().__init__()
        # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
        # has some connection to NTK literature
        # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
        base *= base_rescale_factor ** (dim / (dim - 2))

        inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer('inv_freq', inv_freq)

        assert interpolation_factor >= 1.
        self.interpolation_factor = interpolation_factor

        if not use_xpos:
            self.register_buffer('scale', None)
            return

        scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)

        self.scale_base = scale_base
        self.register_buffer('scale', scale)

    def forward_from_seq_len(self, seq_len):
        device = self.inv_freq.device

        t = torch.arange(seq_len, device=device)
        return self.forward(t)

    @autocast(enabled=False)
    def forward(self, t):
        device = self.inv_freq.device

        t = t.to(torch.float32)

        t = t / self.interpolation_factor

        freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
        freqs = torch.cat((freqs, freqs), dim=-1)

        if self.scale is None:
            return freqs, 1.

        power = (torch.arange(seq_len, device=device) - (seq_len // 2)) / self.scale_base
        scale = self.scale ** rearrange(power, 'n -> n 1')
        scale = torch.cat((scale, scale), dim=-1)

        return freqs, scale


def rotate_half(x):
    x = rearrange(x, '... (j d) -> ... j d', j=2)
    x1, x2 = x.unbind(dim=-2)
    return torch.cat((-x2, x1), dim=-1)


@autocast(enabled=False)
def apply_rotary_pos_emb(t, freqs, scale=1):
    out_dtype = t.dtype

    # cast to float32 if necessary for numerical stability
    dtype = reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
    rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
    freqs, t = freqs.to(dtype), t.to(dtype)
    freqs = freqs[-seq_len:, :]

    if t.ndim == 4 and freqs.ndim == 3:
        freqs = rearrange(freqs, 'b n d -> b 1 n d')

    # partial rotary embeddings, Wang et al. GPT-J
    t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
    t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)

    t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)

    return torch.cat((t, t_unrotated), dim=-1)


# norms
class LayerNorm(nn.Module):
    def __init__(self, dim, bias=False, fix_scale=False):
        """
        bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
        """
        super().__init__()

        if fix_scale:
            self.register_buffer("gamma", torch.ones(dim))
        else:
            self.gamma = nn.Parameter(torch.ones(dim))

        if bias:
            self.beta = nn.Parameter(torch.zeros(dim))
        else:
            self.register_buffer("beta", torch.zeros(dim))

    def forward(self, x):
        return F.layer_norm(x, x.shape[-1:], weight=self.gamma, bias=self.beta)


# feedforward

class GLU(nn.Module):
    def __init__(
            self,
            dim_in,
            dim_out,
            activation: Callable,
            use_conv=False,
            conv_kernel_size=3,
    ):
        super().__init__()
        self.act = activation
        self.proj = nn.Linear(dim_in, dim_out * 2) if not use_conv else nn.Conv1d(dim_in, dim_out * 2, conv_kernel_size,
                                                                                  padding=(conv_kernel_size // 2))
        self.use_conv = use_conv

    def forward(self, x):
        if self.use_conv:
            x = rearrange(x, 'b n d -> b d n')
            x = self.proj(x)
            x = rearrange(x, 'b d n -> b n d')
        else:
            x = self.proj(x)

        x, gate = x.chunk(2, dim=-1)
        return x * self.act(gate)


class FeedForward(nn.Module):
    def __init__(
            self,
            dim,
            dim_out=None,
            mult=4,
            no_bias=False,
            glu=True,
            use_conv=False,
            conv_kernel_size=3,
            zero_init_output=True,
    ):
        super().__init__()
        inner_dim = int(dim * mult)

        # Default to SwiGLU

        activation = nn.SiLU()

        dim_out = dim if dim_out is None else dim_out

        if glu:
            linear_in = GLU(dim, inner_dim, activation)
        else:
            linear_in = nn.Sequential(
                Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
                nn.Linear(dim, inner_dim, bias=not no_bias) if not use_conv else nn.Conv1d(dim, inner_dim,
                                                                                           conv_kernel_size, padding=(
                                conv_kernel_size // 2), bias=not no_bias),
                Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
                activation
            )

        linear_out = nn.Linear(inner_dim, dim_out, bias=not no_bias) if not use_conv else nn.Conv1d(inner_dim, dim_out,
                                                                                                    conv_kernel_size,
                                                                                                    padding=(
                                                                                                                conv_kernel_size // 2),
                                                                                                    bias=not no_bias)

        # init last linear layer to 0
        if zero_init_output:
            nn.init.zeros_(linear_out.weight)
            if not no_bias:
                nn.init.zeros_(linear_out.bias)

        self.ff = nn.Sequential(
            linear_in,
            Rearrange('b d n -> b n d') if use_conv else nn.Identity(),
            linear_out,
            Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
        )

    def forward(self, x):
        return self.ff(x)


class Attention(nn.Module):
    def __init__(
            self,
            dim,
            dim_heads=64,
            dim_context=None,
            causal=False,
            zero_init_output=True,
            qk_norm: Literal['l2', 'ln', 'none'] = 'none',
            natten_kernel_size=None
    ):
        super().__init__()
        self.dim = dim
        self.dim_heads = dim_heads
        self.causal = causal

        dim_kv = dim_context if dim_context is not None else dim

        self.num_heads = dim // dim_heads
        self.kv_heads = dim_kv // dim_heads

        if dim_context is not None:
            self.to_q = nn.Linear(dim, dim, bias=False)
            self.to_kv = nn.Linear(dim_kv, dim_kv * 2, bias=False)
        else:
            self.to_qkv = nn.Linear(dim, dim * 3, bias=False)

        self.to_out = nn.Linear(dim, dim, bias=False)

        if zero_init_output:
            nn.init.zeros_(self.to_out.weight)

        self.qk_norm = qk_norm

        if self.qk_norm == "ln":
            self.q_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6)
            self.k_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6)

        # Using 1d neighborhood attention
        self.natten_kernel_size = natten_kernel_size
        if natten_kernel_size is not None:
            return

        self.use_pt_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')

        self.use_fa_flash = torch.cuda.is_available() and flash_attn_func is not None
        # pdb.set_trace()
        self.use_fa_flash = False

        self.sdp_kwargs = dict(
            enable_flash=True,
            enable_math=True,
            enable_mem_efficient=True
        )

    def flash_attn(
            self,
            q,
            k,
            v,
            mask=None,
            causal=None
    ):
        batch, heads, q_len, _, k_len, device = *q.shape, k.shape[-2], q.device
        kv_heads = k.shape[1]
        # Recommended for multi-query single-key-value attention by Tri Dao
        # kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])

        if heads != kv_heads:
            # Repeat interleave kv_heads to match q_heads
            heads_per_kv_head = heads // kv_heads
            k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim=1), (k, v))

        if k.ndim == 3:
            k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)

        if v.ndim == 3:
            v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)

        causal = self.causal if causal is None else causal

        if q_len == 1 and causal:
            causal = False

        if mask is not None:
            assert mask.ndim == 4
            mask = mask.expand(batch, heads, q_len, k_len)

        assert causal
        # handle kv cache - this should be bypassable in updated flash attention 2
        if k_len > q_len and causal:
            causal_mask = create_causal_mask(q_len, k_len, device=device)
            if mask is None:
                mask = ~causal_mask
            else:
                mask = mask & ~causal_mask
            causal = False

        # manually handle causal mask, if another mask was given

        row_is_entirely_masked = None

        if mask is not None and causal:
            causal_mask = create_causal_mask(q_len, k_len, device=device)
            mask = mask & ~causal_mask

            # protect against an entire row being masked out

            row_is_entirely_masked = ~mask.any(dim=-1)
            mask[..., 0] = mask[..., 0] | row_is_entirely_masked

            causal = False

        with torch.backends.cuda.sdp_kernel(**self.sdp_kwargs):
            out = F.scaled_dot_product_attention(
                q, k, v,
                attn_mask=mask,
                is_causal=causal
            )

        # for a row that is entirely masked out, should zero out the output of that row token

        if row_is_entirely_masked is not None:
            out = out.masked_fill(row_is_entirely_masked[..., None], 0.)

        return out

    def forward(
            self,
            x,
            context=None,
            mask=None,
            context_mask=None,
            rotary_pos_emb=None,
            causal=None
    ):
        h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None

        kv_input = context if has_context else x

        if hasattr(self, 'to_q'):
            # Use separate linear projections for q and k/v
            q = self.to_q(x)
            q = rearrange(q, 'b n (h d) -> b h n d', h=h)

            k, v = self.to_kv(kv_input).chunk(2, dim=-1)

            k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=kv_h), (k, v))
        else:
            # Use fused linear projection
            q, k, v = self.to_qkv(x).chunk(3, dim=-1)
            q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))

        # Normalize q and k for cosine sim attention
        if self.qk_norm == "l2":
            q = F.normalize(q, dim=-1)
            k = F.normalize(k, dim=-1)
        elif self.qk_norm == "ln":
            q = self.q_norm(q)
            k = self.k_norm(k)

        if rotary_pos_emb is not None and not has_context:
            freqs, _ = rotary_pos_emb

            q_dtype = q.dtype
            k_dtype = k.dtype

            q = q.to(torch.float32)
            k = k.to(torch.float32)
            freqs = freqs.to(torch.float32)

            q = apply_rotary_pos_emb(q, freqs)
            k = apply_rotary_pos_emb(k, freqs)

            q = q.to(q_dtype)
            k = k.to(k_dtype)

        input_mask = context_mask

        if input_mask is None and not has_context:
            input_mask = mask

        # determine masking
        masks = []
        final_attn_mask = None  # The mask that will be applied to the attention matrix, taking all masks into account

        if input_mask is not None:
            input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
            masks.append(~input_mask)

        # Other masks will be added here later

        if len(masks) > 0:
            final_attn_mask = ~or_reduce(masks)

        n, device = q.shape[-2], q.device

        causal = self.causal if causal is None else causal

        if n == 1 and causal:
            causal = False

        if self.natten_kernel_size is not None:
            if natten is None:
                raise ImportError('natten not installed, please install natten to use neighborhood attention')

            dtype_in = q.dtype
            q, k, v = map(lambda t: t.to(torch.float32), (q, k, v))

            attn = natten.functional.natten1dqk(q, k, kernel_size=self.natten_kernel_size, dilation=1)

            if final_attn_mask is not None:
                attn = attn.masked_fill(final_attn_mask, -torch.finfo(attn.dtype).max)

            attn = F.softmax(attn, dim=-1, dtype=torch.float32)

            out = natten.functional.natten1dav(attn, v, kernel_size=self.natten_kernel_size, dilation=1).to(dtype_in)

        # Prioritize Flash Attention 2
        elif self.use_fa_flash:
            assert final_attn_mask is None, 'masking not yet supported for Flash Attention 2'
            # Flash Attention 2 requires FP16 inputs
            fa_dtype_in = q.dtype
            q, k, v = map(lambda t: rearrange(t, 'b h n d -> b n h d').to(torch.float16), (q, k, v))

            out = flash_attn_func(q, k, v, causal=causal)

            out = rearrange(out.to(fa_dtype_in), 'b n h d -> b h n d')

        # Fall back to PyTorch implementation
        elif self.use_pt_flash:
            # causal=False
            # final_attn_mask:[64, 1, 1, 348]
            out = self.flash_attn(q, k, v, causal=True, mask=final_attn_mask)

        else:
            # Fall back to custom implementation

            if h != kv_h:
                # Repeat interleave kv_heads to match q_heads
                heads_per_kv_head = h // kv_h
                k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim=1), (k, v))

            scale = 1. / (q.shape[-1] ** 0.5)

            kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'

            dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale

            i, j, dtype = *dots.shape[-2:], dots.dtype

            mask_value = -torch.finfo(dots.dtype).max

            if final_attn_mask is not None:
                dots = dots.masked_fill(~final_attn_mask, mask_value)

            if causal:
                causal_mask = create_causal_mask(i, j, device=device)
                dots = dots.masked_fill(causal_mask, mask_value)

            attn = F.softmax(dots, dim=-1, dtype=torch.float32)
            attn = attn.type(dtype)

            out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)

        # merge heads
        out = rearrange(out, ' b h n d -> b n (h d)')

        # Communicate between heads

        # with autocast(enabled = False):
        #     out_dtype = out.dtype
        #     out = out.to(torch.float32)
        #     out = self.to_out(out).to(out_dtype)
        out = self.to_out(out)

        if mask is not None:
            mask = rearrange(mask, 'b n -> b n 1')
            out = out.masked_fill(~mask, 0.)

        return out


class ConformerModule(nn.Module):
    def __init__(
            self,
            dim,
            norm_kwargs={},
    ):
        super().__init__()

        self.dim = dim

        self.in_norm = LayerNorm(dim, **norm_kwargs)
        self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
        self.glu = GLU(dim, dim, nn.SiLU())
        self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False)
        self.mid_norm = LayerNorm(dim,
                                  **norm_kwargs)  # This is a batch norm in the original but I don't like batch norm
        self.swish = nn.SiLU()
        self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False)

    def forward(self, x):
        x = self.in_norm(x)
        x = rearrange(x, 'b n d -> b d n')
        x = self.pointwise_conv(x)
        x = rearrange(x, 'b d n -> b n d')
        x = self.glu(x)
        x = rearrange(x, 'b n d -> b d n')
        x = self.depthwise_conv(x)
        x = rearrange(x, 'b d n -> b n d')
        x = self.mid_norm(x)
        x = self.swish(x)
        x = rearrange(x, 'b n d -> b d n')
        x = self.pointwise_conv_2(x)
        x = rearrange(x, 'b d n -> b n d')

        return x


class TransformerBlock(nn.Module):
    def __init__(
            self,
            dim,
            dim_heads=64,
            cross_attend=False,
            dim_context=None,
            global_cond_dim=None,
            causal=False,
            zero_init_branch_outputs=True,
            conformer=False,
            layer_ix=-1,
            remove_norms=False,
            attn_kwargs={},
            ff_kwargs={},
            norm_kwargs={}
    ):

        super().__init__()
        self.dim = dim
        self.dim_heads = dim_heads
        self.cross_attend = cross_attend
        self.dim_context = dim_context
        self.causal = causal

        self.pre_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()

        self.self_attn = Attention(
            dim,
            dim_heads=dim_heads,
            causal=causal,
            zero_init_output=zero_init_branch_outputs,
            **attn_kwargs
        )
        ### 2. ไธป่ฆๆ˜ฏ่ฟ™่พน้œ€่ฆไฟฎๆ”น
        if cross_attend:
            self.cross_attend_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
            self.cross_attn = Attention(
                dim,
                dim_heads=dim_heads,
                dim_context=dim_context,
                causal=causal,
                zero_init_output=zero_init_branch_outputs,
                **attn_kwargs
            )

        self.ff_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
        self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, **ff_kwargs)

        self.layer_ix = layer_ix

        self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None

        self.global_cond_dim = global_cond_dim

        if global_cond_dim is not None:
            self.to_scale_shift_gate = nn.Sequential(
                nn.SiLU(),
                nn.Linear(global_cond_dim, dim * 6, bias=False)
            )

            nn.init.zeros_(self.to_scale_shift_gate[1].weight)
            # nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)

    def forward(
            self,
            x,
            context=None,
            global_cond=None,
            mask=None,
            context_mask=None,
            rotary_pos_emb=None
    ):
        if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:

            scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(
                global_cond).unsqueeze(1).chunk(6, dim=-1)

            # self-attention with adaLN
            residual = x
            x = self.pre_norm(x)
            x = x * (1 + scale_self) + shift_self
            x = self.self_attn(x, mask=mask, rotary_pos_emb=rotary_pos_emb)
            x = x * torch.sigmoid(1 - gate_self)
            x = x + residual

            if context is not None:
                x = x + self.cross_attn(self.cross_attend_norm(x), context=context, context_mask=context_mask)

            if self.conformer is not None:
                x = x + self.conformer(x)

            # feedforward with adaLN
            residual = x
            x = self.ff_norm(x)
            x = x * (1 + scale_ff) + shift_ff
            x = self.ff(x)
            x = x * torch.sigmoid(1 - gate_ff)
            x = x + residual

        else:
            x = x + self.self_attn(self.pre_norm(x), mask=mask, rotary_pos_emb=rotary_pos_emb)

            if context is not None:
                x = x + self.cross_attn(self.cross_attend_norm(x), context=context, context_mask=context_mask)

            if self.conformer is not None:
                x = x + self.conformer(x)

            x = x + self.ff(self.ff_norm(x))

        return x


class ContinuousTransformer(nn.Module):
    def __init__(
            self,
            dim,
            depth,
            *,
            dim_in=None,
            dim_out=None,
            dim_heads=64,
            cross_attend=False,
            cond_token_dim=None,
            global_cond_dim=None,
            causal=False,
            rotary_pos_emb=True,
            zero_init_branch_outputs=True,
            conformer=False,
            use_sinusoidal_emb=False,
            use_abs_pos_emb=False,
            abs_pos_emb_max_length=10000,
            **kwargs
    ):

        super().__init__()

        self.dim = dim
        self.depth = depth
        self.causal = causal
        self.layers = nn.ModuleList([])

        self.project_in = nn.Linear(dim_in, dim, bias=False) if dim_in is not None else nn.Identity()
        self.project_out = nn.Linear(dim, dim_out, bias=False) if dim_out is not None else nn.Identity()

        if rotary_pos_emb:
            self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32))
        else:
            self.rotary_pos_emb = None

        self.use_sinusoidal_emb = use_sinusoidal_emb
        if use_sinusoidal_emb:
            self.pos_emb = ScaledSinusoidalEmbedding(dim)

        self.use_abs_pos_emb = use_abs_pos_emb
        if use_abs_pos_emb:
            self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length)

        for i in range(depth):
            self.layers.append(
                TransformerBlock(
                    dim,
                    dim_heads=dim_heads,
                    cross_attend=cross_attend,
                    dim_context=cond_token_dim,
                    global_cond_dim=global_cond_dim,
                    causal=causal,
                    zero_init_branch_outputs=zero_init_branch_outputs,
                    conformer=conformer,
                    layer_ix=i,
                    **kwargs
                )
            )

    def forward(
            self,
            x,
            mask=None,
            prepend_embeds=None,
            prepend_mask=None,
            global_cond=None,
            return_info=False,
            **kwargs
    ):
        batch, seq, device = *x.shape[:2], x.device

        info = {
            "hidden_states": [],
        }

        x = self.project_in(x)
        if prepend_embeds is not None:
            prepend_length, prepend_dim = prepend_embeds.shape[1:]

            assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension'

            x = torch.cat((prepend_embeds, x), dim=-2)

            if prepend_mask is not None or mask is not None:
                mask = mask if mask is not None else torch.ones((batch, seq), device=device, dtype=torch.bool)
                prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length),
                                                                                        device=device, dtype=torch.bool)

                mask = torch.cat((prepend_mask, mask), dim=-1)

        # Attention layers 

        if self.rotary_pos_emb is not None:
            rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1])
        else:
            rotary_pos_emb = None

        if self.use_sinusoidal_emb or self.use_abs_pos_emb:
            x = x + self.pos_emb(x)

        # Iterate over the transformer layers
        mask = self.refine_mask(mask)
        for layer in self.layers:
            # x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
            # pdb.set_trace()
            x = checkpoint(layer, x, mask=mask.bool(), rotary_pos_emb=rotary_pos_emb, global_cond=global_cond, **kwargs)

            if return_info:
                info["hidden_states"].append(x)

        x = self.project_out(x)

        if return_info:
            return x, info

        return x

    def refine_mask(self, mask):
        return mask
        # pdb.set_trace()
        # mask = 1 - torch.triu(torch.ones(seq_length, seq_length), diagonal=1)
        # return mask