Spaces:
Runtime error
Runtime error
File size: 27,591 Bytes
31ba7c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
import pdb
from functools import reduce, partial
from packaging import version
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
import torch
import torch.nn.functional as F
from torch import nn, einsum
from torch.cuda.amp import autocast
from typing import Callable, Literal
try:
from flash_attn import flash_attn_func, flash_attn_kvpacked_func
except ImportError as e:
print(e)
print('flash_attn not installed, disabling Flash Attention')
flash_attn_kvpacked_func = None
flash_attn_func = None
try:
import natten
except ImportError:
natten = None
def checkpoint(function, *args, **kwargs):
kwargs.setdefault("use_reentrant", False)
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
# Copied and modified from https://github.com/lucidrains/x-transformers/blob/main/x_transformers/attend.py under MIT License
# License can be found in LICENSES/LICENSE_XTRANSFORMERS.txt
def create_causal_mask(i, j, device):
return torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 1)
def or_reduce(masks):
head, *body = masks
for rest in body:
head = head | rest
return head
# positional embeddings
class AbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len):
super().__init__()
self.scale = dim ** -0.5
self.max_seq_len = max_seq_len
self.emb = nn.Embedding(max_seq_len, dim)
def forward(self, x, pos=None, seq_start_pos=None):
seq_len, device = x.shape[1], x.device
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
if pos is None:
pos = torch.arange(seq_len, device=device)
if seq_start_pos is not None:
pos = (pos - seq_start_pos[..., None]).clamp(min=0)
pos_emb = self.emb(pos)
pos_emb = pos_emb * self.scale
return pos_emb
class ScaledSinusoidalEmbedding(nn.Module):
def __init__(self, dim, theta=10000):
super().__init__()
assert (dim % 2) == 0, 'dimension must be divisible by 2'
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
half_dim = dim // 2
freq_seq = torch.arange(half_dim).float() / half_dim
inv_freq = theta ** -freq_seq
self.register_buffer('inv_freq', inv_freq, persistent=False)
def forward(self, x, pos=None, seq_start_pos=None):
seq_len, device = x.shape[1], x.device
if pos is None:
pos = torch.arange(seq_len, device=device)
if seq_start_pos is not None:
pos = pos - seq_start_pos[..., None]
emb = einsum('i, j -> i j', pos, self.inv_freq)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb * self.scale
class RotaryEmbedding(nn.Module):
def __init__(
self,
dim,
use_xpos=False,
scale_base=512,
interpolation_factor=1.,
base=10000,
base_rescale_factor=1.
):
super().__init__()
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
base *= base_rescale_factor ** (dim / (dim - 2))
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
assert interpolation_factor >= 1.
self.interpolation_factor = interpolation_factor
if not use_xpos:
self.register_buffer('scale', None)
return
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.scale_base = scale_base
self.register_buffer('scale', scale)
def forward_from_seq_len(self, seq_len):
device = self.inv_freq.device
t = torch.arange(seq_len, device=device)
return self.forward(t)
@autocast(enabled=False)
def forward(self, t):
device = self.inv_freq.device
t = t.to(torch.float32)
t = t / self.interpolation_factor
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim=-1)
if self.scale is None:
return freqs, 1.
power = (torch.arange(seq_len, device=device) - (seq_len // 2)) / self.scale_base
scale = self.scale ** rearrange(power, 'n -> n 1')
scale = torch.cat((scale, scale), dim=-1)
return freqs, scale
def rotate_half(x):
x = rearrange(x, '... (j d) -> ... j d', j=2)
x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
@autocast(enabled=False)
def apply_rotary_pos_emb(t, freqs, scale=1):
out_dtype = t.dtype
# cast to float32 if necessary for numerical stability
dtype = reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
freqs, t = freqs.to(dtype), t.to(dtype)
freqs = freqs[-seq_len:, :]
if t.ndim == 4 and freqs.ndim == 3:
freqs = rearrange(freqs, 'b n d -> b 1 n d')
# partial rotary embeddings, Wang et al. GPT-J
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)
return torch.cat((t, t_unrotated), dim=-1)
# norms
class LayerNorm(nn.Module):
def __init__(self, dim, bias=False, fix_scale=False):
"""
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
"""
super().__init__()
if fix_scale:
self.register_buffer("gamma", torch.ones(dim))
else:
self.gamma = nn.Parameter(torch.ones(dim))
if bias:
self.beta = nn.Parameter(torch.zeros(dim))
else:
self.register_buffer("beta", torch.zeros(dim))
def forward(self, x):
return F.layer_norm(x, x.shape[-1:], weight=self.gamma, bias=self.beta)
# feedforward
class GLU(nn.Module):
def __init__(
self,
dim_in,
dim_out,
activation: Callable,
use_conv=False,
conv_kernel_size=3,
):
super().__init__()
self.act = activation
self.proj = nn.Linear(dim_in, dim_out * 2) if not use_conv else nn.Conv1d(dim_in, dim_out * 2, conv_kernel_size,
padding=(conv_kernel_size // 2))
self.use_conv = use_conv
def forward(self, x):
if self.use_conv:
x = rearrange(x, 'b n d -> b d n')
x = self.proj(x)
x = rearrange(x, 'b d n -> b n d')
else:
x = self.proj(x)
x, gate = x.chunk(2, dim=-1)
return x * self.act(gate)
class FeedForward(nn.Module):
def __init__(
self,
dim,
dim_out=None,
mult=4,
no_bias=False,
glu=True,
use_conv=False,
conv_kernel_size=3,
zero_init_output=True,
):
super().__init__()
inner_dim = int(dim * mult)
# Default to SwiGLU
activation = nn.SiLU()
dim_out = dim if dim_out is None else dim_out
if glu:
linear_in = GLU(dim, inner_dim, activation)
else:
linear_in = nn.Sequential(
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
nn.Linear(dim, inner_dim, bias=not no_bias) if not use_conv else nn.Conv1d(dim, inner_dim,
conv_kernel_size, padding=(
conv_kernel_size // 2), bias=not no_bias),
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
activation
)
linear_out = nn.Linear(inner_dim, dim_out, bias=not no_bias) if not use_conv else nn.Conv1d(inner_dim, dim_out,
conv_kernel_size,
padding=(
conv_kernel_size // 2),
bias=not no_bias)
# init last linear layer to 0
if zero_init_output:
nn.init.zeros_(linear_out.weight)
if not no_bias:
nn.init.zeros_(linear_out.bias)
self.ff = nn.Sequential(
linear_in,
Rearrange('b d n -> b n d') if use_conv else nn.Identity(),
linear_out,
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
)
def forward(self, x):
return self.ff(x)
class Attention(nn.Module):
def __init__(
self,
dim,
dim_heads=64,
dim_context=None,
causal=False,
zero_init_output=True,
qk_norm: Literal['l2', 'ln', 'none'] = 'none',
natten_kernel_size=None
):
super().__init__()
self.dim = dim
self.dim_heads = dim_heads
self.causal = causal
dim_kv = dim_context if dim_context is not None else dim
self.num_heads = dim // dim_heads
self.kv_heads = dim_kv // dim_heads
if dim_context is not None:
self.to_q = nn.Linear(dim, dim, bias=False)
self.to_kv = nn.Linear(dim_kv, dim_kv * 2, bias=False)
else:
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
self.to_out = nn.Linear(dim, dim, bias=False)
if zero_init_output:
nn.init.zeros_(self.to_out.weight)
self.qk_norm = qk_norm
if self.qk_norm == "ln":
self.q_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6)
self.k_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6)
# Using 1d neighborhood attention
self.natten_kernel_size = natten_kernel_size
if natten_kernel_size is not None:
return
self.use_pt_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
self.use_fa_flash = torch.cuda.is_available() and flash_attn_func is not None
# pdb.set_trace()
self.use_fa_flash = False
self.sdp_kwargs = dict(
enable_flash=True,
enable_math=True,
enable_mem_efficient=True
)
def flash_attn(
self,
q,
k,
v,
mask=None,
causal=None
):
batch, heads, q_len, _, k_len, device = *q.shape, k.shape[-2], q.device
kv_heads = k.shape[1]
# Recommended for multi-query single-key-value attention by Tri Dao
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
if heads != kv_heads:
# Repeat interleave kv_heads to match q_heads
heads_per_kv_head = heads // kv_heads
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim=1), (k, v))
if k.ndim == 3:
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)
if v.ndim == 3:
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)
causal = self.causal if causal is None else causal
if q_len == 1 and causal:
causal = False
if mask is not None:
assert mask.ndim == 4
mask = mask.expand(batch, heads, q_len, k_len)
assert causal
# handle kv cache - this should be bypassable in updated flash attention 2
if k_len > q_len and causal:
causal_mask = create_causal_mask(q_len, k_len, device=device)
if mask is None:
mask = ~causal_mask
else:
mask = mask & ~causal_mask
causal = False
# manually handle causal mask, if another mask was given
row_is_entirely_masked = None
if mask is not None and causal:
causal_mask = create_causal_mask(q_len, k_len, device=device)
mask = mask & ~causal_mask
# protect against an entire row being masked out
row_is_entirely_masked = ~mask.any(dim=-1)
mask[..., 0] = mask[..., 0] | row_is_entirely_masked
causal = False
with torch.backends.cuda.sdp_kernel(**self.sdp_kwargs):
out = F.scaled_dot_product_attention(
q, k, v,
attn_mask=mask,
is_causal=causal
)
# for a row that is entirely masked out, should zero out the output of that row token
if row_is_entirely_masked is not None:
out = out.masked_fill(row_is_entirely_masked[..., None], 0.)
return out
def forward(
self,
x,
context=None,
mask=None,
context_mask=None,
rotary_pos_emb=None,
causal=None
):
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
kv_input = context if has_context else x
if hasattr(self, 'to_q'):
# Use separate linear projections for q and k/v
q = self.to_q(x)
q = rearrange(q, 'b n (h d) -> b h n d', h=h)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=kv_h), (k, v))
else:
# Use fused linear projection
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
# Normalize q and k for cosine sim attention
if self.qk_norm == "l2":
q = F.normalize(q, dim=-1)
k = F.normalize(k, dim=-1)
elif self.qk_norm == "ln":
q = self.q_norm(q)
k = self.k_norm(k)
if rotary_pos_emb is not None and not has_context:
freqs, _ = rotary_pos_emb
q_dtype = q.dtype
k_dtype = k.dtype
q = q.to(torch.float32)
k = k.to(torch.float32)
freqs = freqs.to(torch.float32)
q = apply_rotary_pos_emb(q, freqs)
k = apply_rotary_pos_emb(k, freqs)
q = q.to(q_dtype)
k = k.to(k_dtype)
input_mask = context_mask
if input_mask is None and not has_context:
input_mask = mask
# determine masking
masks = []
final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account
if input_mask is not None:
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
masks.append(~input_mask)
# Other masks will be added here later
if len(masks) > 0:
final_attn_mask = ~or_reduce(masks)
n, device = q.shape[-2], q.device
causal = self.causal if causal is None else causal
if n == 1 and causal:
causal = False
if self.natten_kernel_size is not None:
if natten is None:
raise ImportError('natten not installed, please install natten to use neighborhood attention')
dtype_in = q.dtype
q, k, v = map(lambda t: t.to(torch.float32), (q, k, v))
attn = natten.functional.natten1dqk(q, k, kernel_size=self.natten_kernel_size, dilation=1)
if final_attn_mask is not None:
attn = attn.masked_fill(final_attn_mask, -torch.finfo(attn.dtype).max)
attn = F.softmax(attn, dim=-1, dtype=torch.float32)
out = natten.functional.natten1dav(attn, v, kernel_size=self.natten_kernel_size, dilation=1).to(dtype_in)
# Prioritize Flash Attention 2
elif self.use_fa_flash:
assert final_attn_mask is None, 'masking not yet supported for Flash Attention 2'
# Flash Attention 2 requires FP16 inputs
fa_dtype_in = q.dtype
q, k, v = map(lambda t: rearrange(t, 'b h n d -> b n h d').to(torch.float16), (q, k, v))
out = flash_attn_func(q, k, v, causal=causal)
out = rearrange(out.to(fa_dtype_in), 'b n h d -> b h n d')
# Fall back to PyTorch implementation
elif self.use_pt_flash:
# causal=False
# final_attn_mask:[64, 1, 1, 348]
out = self.flash_attn(q, k, v, causal=True, mask=final_attn_mask)
else:
# Fall back to custom implementation
if h != kv_h:
# Repeat interleave kv_heads to match q_heads
heads_per_kv_head = h // kv_h
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim=1), (k, v))
scale = 1. / (q.shape[-1] ** 0.5)
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale
i, j, dtype = *dots.shape[-2:], dots.dtype
mask_value = -torch.finfo(dots.dtype).max
if final_attn_mask is not None:
dots = dots.masked_fill(~final_attn_mask, mask_value)
if causal:
causal_mask = create_causal_mask(i, j, device=device)
dots = dots.masked_fill(causal_mask, mask_value)
attn = F.softmax(dots, dim=-1, dtype=torch.float32)
attn = attn.type(dtype)
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)
# merge heads
out = rearrange(out, ' b h n d -> b n (h d)')
# Communicate between heads
# with autocast(enabled = False):
# out_dtype = out.dtype
# out = out.to(torch.float32)
# out = self.to_out(out).to(out_dtype)
out = self.to_out(out)
if mask is not None:
mask = rearrange(mask, 'b n -> b n 1')
out = out.masked_fill(~mask, 0.)
return out
class ConformerModule(nn.Module):
def __init__(
self,
dim,
norm_kwargs={},
):
super().__init__()
self.dim = dim
self.in_norm = LayerNorm(dim, **norm_kwargs)
self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
self.glu = GLU(dim, dim, nn.SiLU())
self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False)
self.mid_norm = LayerNorm(dim,
**norm_kwargs) # This is a batch norm in the original but I don't like batch norm
self.swish = nn.SiLU()
self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
def forward(self, x):
x = self.in_norm(x)
x = rearrange(x, 'b n d -> b d n')
x = self.pointwise_conv(x)
x = rearrange(x, 'b d n -> b n d')
x = self.glu(x)
x = rearrange(x, 'b n d -> b d n')
x = self.depthwise_conv(x)
x = rearrange(x, 'b d n -> b n d')
x = self.mid_norm(x)
x = self.swish(x)
x = rearrange(x, 'b n d -> b d n')
x = self.pointwise_conv_2(x)
x = rearrange(x, 'b d n -> b n d')
return x
class TransformerBlock(nn.Module):
def __init__(
self,
dim,
dim_heads=64,
cross_attend=False,
dim_context=None,
global_cond_dim=None,
causal=False,
zero_init_branch_outputs=True,
conformer=False,
layer_ix=-1,
remove_norms=False,
attn_kwargs={},
ff_kwargs={},
norm_kwargs={}
):
super().__init__()
self.dim = dim
self.dim_heads = dim_heads
self.cross_attend = cross_attend
self.dim_context = dim_context
self.causal = causal
self.pre_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
self.self_attn = Attention(
dim,
dim_heads=dim_heads,
causal=causal,
zero_init_output=zero_init_branch_outputs,
**attn_kwargs
)
### 2. ไธป่ฆๆฏ่ฟ่พน้่ฆไฟฎๆน
if cross_attend:
self.cross_attend_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
self.cross_attn = Attention(
dim,
dim_heads=dim_heads,
dim_context=dim_context,
causal=causal,
zero_init_output=zero_init_branch_outputs,
**attn_kwargs
)
self.ff_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, **ff_kwargs)
self.layer_ix = layer_ix
self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None
self.global_cond_dim = global_cond_dim
if global_cond_dim is not None:
self.to_scale_shift_gate = nn.Sequential(
nn.SiLU(),
nn.Linear(global_cond_dim, dim * 6, bias=False)
)
nn.init.zeros_(self.to_scale_shift_gate[1].weight)
# nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)
def forward(
self,
x,
context=None,
global_cond=None,
mask=None,
context_mask=None,
rotary_pos_emb=None
):
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(
global_cond).unsqueeze(1).chunk(6, dim=-1)
# self-attention with adaLN
residual = x
x = self.pre_norm(x)
x = x * (1 + scale_self) + shift_self
x = self.self_attn(x, mask=mask, rotary_pos_emb=rotary_pos_emb)
x = x * torch.sigmoid(1 - gate_self)
x = x + residual
if context is not None:
x = x + self.cross_attn(self.cross_attend_norm(x), context=context, context_mask=context_mask)
if self.conformer is not None:
x = x + self.conformer(x)
# feedforward with adaLN
residual = x
x = self.ff_norm(x)
x = x * (1 + scale_ff) + shift_ff
x = self.ff(x)
x = x * torch.sigmoid(1 - gate_ff)
x = x + residual
else:
x = x + self.self_attn(self.pre_norm(x), mask=mask, rotary_pos_emb=rotary_pos_emb)
if context is not None:
x = x + self.cross_attn(self.cross_attend_norm(x), context=context, context_mask=context_mask)
if self.conformer is not None:
x = x + self.conformer(x)
x = x + self.ff(self.ff_norm(x))
return x
class ContinuousTransformer(nn.Module):
def __init__(
self,
dim,
depth,
*,
dim_in=None,
dim_out=None,
dim_heads=64,
cross_attend=False,
cond_token_dim=None,
global_cond_dim=None,
causal=False,
rotary_pos_emb=True,
zero_init_branch_outputs=True,
conformer=False,
use_sinusoidal_emb=False,
use_abs_pos_emb=False,
abs_pos_emb_max_length=10000,
**kwargs
):
super().__init__()
self.dim = dim
self.depth = depth
self.causal = causal
self.layers = nn.ModuleList([])
self.project_in = nn.Linear(dim_in, dim, bias=False) if dim_in is not None else nn.Identity()
self.project_out = nn.Linear(dim, dim_out, bias=False) if dim_out is not None else nn.Identity()
if rotary_pos_emb:
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32))
else:
self.rotary_pos_emb = None
self.use_sinusoidal_emb = use_sinusoidal_emb
if use_sinusoidal_emb:
self.pos_emb = ScaledSinusoidalEmbedding(dim)
self.use_abs_pos_emb = use_abs_pos_emb
if use_abs_pos_emb:
self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length)
for i in range(depth):
self.layers.append(
TransformerBlock(
dim,
dim_heads=dim_heads,
cross_attend=cross_attend,
dim_context=cond_token_dim,
global_cond_dim=global_cond_dim,
causal=causal,
zero_init_branch_outputs=zero_init_branch_outputs,
conformer=conformer,
layer_ix=i,
**kwargs
)
)
def forward(
self,
x,
mask=None,
prepend_embeds=None,
prepend_mask=None,
global_cond=None,
return_info=False,
**kwargs
):
batch, seq, device = *x.shape[:2], x.device
info = {
"hidden_states": [],
}
x = self.project_in(x)
if prepend_embeds is not None:
prepend_length, prepend_dim = prepend_embeds.shape[1:]
assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension'
x = torch.cat((prepend_embeds, x), dim=-2)
if prepend_mask is not None or mask is not None:
mask = mask if mask is not None else torch.ones((batch, seq), device=device, dtype=torch.bool)
prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length),
device=device, dtype=torch.bool)
mask = torch.cat((prepend_mask, mask), dim=-1)
# Attention layers
if self.rotary_pos_emb is not None:
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1])
else:
rotary_pos_emb = None
if self.use_sinusoidal_emb or self.use_abs_pos_emb:
x = x + self.pos_emb(x)
# Iterate over the transformer layers
mask = self.refine_mask(mask)
for layer in self.layers:
# x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
# pdb.set_trace()
x = checkpoint(layer, x, mask=mask.bool(), rotary_pos_emb=rotary_pos_emb, global_cond=global_cond, **kwargs)
if return_info:
info["hidden_states"].append(x)
x = self.project_out(x)
if return_info:
return x, info
return x
def refine_mask(self, mask):
return mask
# pdb.set_trace()
# mask = 1 - torch.triu(torch.ones(seq_length, seq_length), diagonal=1)
# return mask
|