Spaces:
Runtime error
Runtime error
import pdb | |
from functools import reduce, partial | |
from packaging import version | |
from einops import rearrange, repeat | |
from einops.layers.torch import Rearrange | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, einsum | |
from torch.cuda.amp import autocast | |
from typing import Callable, Literal | |
try: | |
from flash_attn import flash_attn_func, flash_attn_kvpacked_func | |
except ImportError as e: | |
print(e) | |
print('flash_attn not installed, disabling Flash Attention') | |
flash_attn_kvpacked_func = None | |
flash_attn_func = None | |
try: | |
import natten | |
except ImportError: | |
natten = None | |
def checkpoint(function, *args, **kwargs): | |
kwargs.setdefault("use_reentrant", False) | |
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs) | |
# Copied and modified from https://github.com/lucidrains/x-transformers/blob/main/x_transformers/attend.py under MIT License | |
# License can be found in LICENSES/LICENSE_XTRANSFORMERS.txt | |
def create_causal_mask(i, j, device): | |
return torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 1) | |
def or_reduce(masks): | |
head, *body = masks | |
for rest in body: | |
head = head | rest | |
return head | |
# positional embeddings | |
class AbsolutePositionalEmbedding(nn.Module): | |
def __init__(self, dim, max_seq_len): | |
super().__init__() | |
self.scale = dim ** -0.5 | |
self.max_seq_len = max_seq_len | |
self.emb = nn.Embedding(max_seq_len, dim) | |
def forward(self, x, pos=None, seq_start_pos=None): | |
seq_len, device = x.shape[1], x.device | |
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}' | |
if pos is None: | |
pos = torch.arange(seq_len, device=device) | |
if seq_start_pos is not None: | |
pos = (pos - seq_start_pos[..., None]).clamp(min=0) | |
pos_emb = self.emb(pos) | |
pos_emb = pos_emb * self.scale | |
return pos_emb | |
class ScaledSinusoidalEmbedding(nn.Module): | |
def __init__(self, dim, theta=10000): | |
super().__init__() | |
assert (dim % 2) == 0, 'dimension must be divisible by 2' | |
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5) | |
half_dim = dim // 2 | |
freq_seq = torch.arange(half_dim).float() / half_dim | |
inv_freq = theta ** -freq_seq | |
self.register_buffer('inv_freq', inv_freq, persistent=False) | |
def forward(self, x, pos=None, seq_start_pos=None): | |
seq_len, device = x.shape[1], x.device | |
if pos is None: | |
pos = torch.arange(seq_len, device=device) | |
if seq_start_pos is not None: | |
pos = pos - seq_start_pos[..., None] | |
emb = einsum('i, j -> i j', pos, self.inv_freq) | |
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) | |
return emb * self.scale | |
class RotaryEmbedding(nn.Module): | |
def __init__( | |
self, | |
dim, | |
use_xpos=False, | |
scale_base=512, | |
interpolation_factor=1., | |
base=10000, | |
base_rescale_factor=1. | |
): | |
super().__init__() | |
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning | |
# has some connection to NTK literature | |
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ | |
base *= base_rescale_factor ** (dim / (dim - 2)) | |
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer('inv_freq', inv_freq) | |
assert interpolation_factor >= 1. | |
self.interpolation_factor = interpolation_factor | |
if not use_xpos: | |
self.register_buffer('scale', None) | |
return | |
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) | |
self.scale_base = scale_base | |
self.register_buffer('scale', scale) | |
def forward_from_seq_len(self, seq_len): | |
device = self.inv_freq.device | |
t = torch.arange(seq_len, device=device) | |
return self.forward(t) | |
def forward(self, t): | |
device = self.inv_freq.device | |
t = t.to(torch.float32) | |
t = t / self.interpolation_factor | |
freqs = torch.einsum('i , j -> i j', t, self.inv_freq) | |
freqs = torch.cat((freqs, freqs), dim=-1) | |
if self.scale is None: | |
return freqs, 1. | |
power = (torch.arange(seq_len, device=device) - (seq_len // 2)) / self.scale_base | |
scale = self.scale ** rearrange(power, 'n -> n 1') | |
scale = torch.cat((scale, scale), dim=-1) | |
return freqs, scale | |
def rotate_half(x): | |
x = rearrange(x, '... (j d) -> ... j d', j=2) | |
x1, x2 = x.unbind(dim=-2) | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(t, freqs, scale=1): | |
out_dtype = t.dtype | |
# cast to float32 if necessary for numerical stability | |
dtype = reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32)) | |
rot_dim, seq_len = freqs.shape[-1], t.shape[-2] | |
freqs, t = freqs.to(dtype), t.to(dtype) | |
freqs = freqs[-seq_len:, :] | |
if t.ndim == 4 and freqs.ndim == 3: | |
freqs = rearrange(freqs, 'b n d -> b 1 n d') | |
# partial rotary embeddings, Wang et al. GPT-J | |
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:] | |
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) | |
t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype) | |
return torch.cat((t, t_unrotated), dim=-1) | |
# norms | |
class LayerNorm(nn.Module): | |
def __init__(self, dim, bias=False, fix_scale=False): | |
""" | |
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less | |
""" | |
super().__init__() | |
if fix_scale: | |
self.register_buffer("gamma", torch.ones(dim)) | |
else: | |
self.gamma = nn.Parameter(torch.ones(dim)) | |
if bias: | |
self.beta = nn.Parameter(torch.zeros(dim)) | |
else: | |
self.register_buffer("beta", torch.zeros(dim)) | |
def forward(self, x): | |
return F.layer_norm(x, x.shape[-1:], weight=self.gamma, bias=self.beta) | |
# feedforward | |
class GLU(nn.Module): | |
def __init__( | |
self, | |
dim_in, | |
dim_out, | |
activation: Callable, | |
use_conv=False, | |
conv_kernel_size=3, | |
): | |
super().__init__() | |
self.act = activation | |
self.proj = nn.Linear(dim_in, dim_out * 2) if not use_conv else nn.Conv1d(dim_in, dim_out * 2, conv_kernel_size, | |
padding=(conv_kernel_size // 2)) | |
self.use_conv = use_conv | |
def forward(self, x): | |
if self.use_conv: | |
x = rearrange(x, 'b n d -> b d n') | |
x = self.proj(x) | |
x = rearrange(x, 'b d n -> b n d') | |
else: | |
x = self.proj(x) | |
x, gate = x.chunk(2, dim=-1) | |
return x * self.act(gate) | |
class FeedForward(nn.Module): | |
def __init__( | |
self, | |
dim, | |
dim_out=None, | |
mult=4, | |
no_bias=False, | |
glu=True, | |
use_conv=False, | |
conv_kernel_size=3, | |
zero_init_output=True, | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
# Default to SwiGLU | |
activation = nn.SiLU() | |
dim_out = dim if dim_out is None else dim_out | |
if glu: | |
linear_in = GLU(dim, inner_dim, activation) | |
else: | |
linear_in = nn.Sequential( | |
Rearrange('b n d -> b d n') if use_conv else nn.Identity(), | |
nn.Linear(dim, inner_dim, bias=not no_bias) if not use_conv else nn.Conv1d(dim, inner_dim, | |
conv_kernel_size, padding=( | |
conv_kernel_size // 2), bias=not no_bias), | |
Rearrange('b n d -> b d n') if use_conv else nn.Identity(), | |
activation | |
) | |
linear_out = nn.Linear(inner_dim, dim_out, bias=not no_bias) if not use_conv else nn.Conv1d(inner_dim, dim_out, | |
conv_kernel_size, | |
padding=( | |
conv_kernel_size // 2), | |
bias=not no_bias) | |
# init last linear layer to 0 | |
if zero_init_output: | |
nn.init.zeros_(linear_out.weight) | |
if not no_bias: | |
nn.init.zeros_(linear_out.bias) | |
self.ff = nn.Sequential( | |
linear_in, | |
Rearrange('b d n -> b n d') if use_conv else nn.Identity(), | |
linear_out, | |
Rearrange('b n d -> b d n') if use_conv else nn.Identity(), | |
) | |
def forward(self, x): | |
return self.ff(x) | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
dim_heads=64, | |
dim_context=None, | |
causal=False, | |
zero_init_output=True, | |
qk_norm: Literal['l2', 'ln', 'none'] = 'none', | |
natten_kernel_size=None | |
): | |
super().__init__() | |
self.dim = dim | |
self.dim_heads = dim_heads | |
self.causal = causal | |
dim_kv = dim_context if dim_context is not None else dim | |
self.num_heads = dim // dim_heads | |
self.kv_heads = dim_kv // dim_heads | |
if dim_context is not None: | |
self.to_q = nn.Linear(dim, dim, bias=False) | |
self.to_kv = nn.Linear(dim_kv, dim_kv * 2, bias=False) | |
else: | |
self.to_qkv = nn.Linear(dim, dim * 3, bias=False) | |
self.to_out = nn.Linear(dim, dim, bias=False) | |
if zero_init_output: | |
nn.init.zeros_(self.to_out.weight) | |
self.qk_norm = qk_norm | |
if self.qk_norm == "ln": | |
self.q_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6) | |
self.k_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6) | |
# Using 1d neighborhood attention | |
self.natten_kernel_size = natten_kernel_size | |
if natten_kernel_size is not None: | |
return | |
self.use_pt_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0') | |
self.use_fa_flash = torch.cuda.is_available() and flash_attn_func is not None | |
# pdb.set_trace() | |
self.use_fa_flash = False | |
self.sdp_kwargs = dict( | |
enable_flash=True, | |
enable_math=True, | |
enable_mem_efficient=True | |
) | |
def flash_attn( | |
self, | |
q, | |
k, | |
v, | |
mask=None, | |
causal=None | |
): | |
batch, heads, q_len, _, k_len, device = *q.shape, k.shape[-2], q.device | |
kv_heads = k.shape[1] | |
# Recommended for multi-query single-key-value attention by Tri Dao | |
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64]) | |
if heads != kv_heads: | |
# Repeat interleave kv_heads to match q_heads | |
heads_per_kv_head = heads // kv_heads | |
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim=1), (k, v)) | |
if k.ndim == 3: | |
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q) | |
if v.ndim == 3: | |
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q) | |
causal = self.causal if causal is None else causal | |
if q_len == 1 and causal: | |
causal = False | |
if mask is not None: | |
assert mask.ndim == 4 | |
mask = mask.expand(batch, heads, q_len, k_len) | |
assert causal | |
# handle kv cache - this should be bypassable in updated flash attention 2 | |
if k_len > q_len and causal: | |
causal_mask = create_causal_mask(q_len, k_len, device=device) | |
if mask is None: | |
mask = ~causal_mask | |
else: | |
mask = mask & ~causal_mask | |
causal = False | |
# manually handle causal mask, if another mask was given | |
row_is_entirely_masked = None | |
if mask is not None and causal: | |
causal_mask = create_causal_mask(q_len, k_len, device=device) | |
mask = mask & ~causal_mask | |
# protect against an entire row being masked out | |
row_is_entirely_masked = ~mask.any(dim=-1) | |
mask[..., 0] = mask[..., 0] | row_is_entirely_masked | |
causal = False | |
with torch.backends.cuda.sdp_kernel(**self.sdp_kwargs): | |
out = F.scaled_dot_product_attention( | |
q, k, v, | |
attn_mask=mask, | |
is_causal=causal | |
) | |
# for a row that is entirely masked out, should zero out the output of that row token | |
if row_is_entirely_masked is not None: | |
out = out.masked_fill(row_is_entirely_masked[..., None], 0.) | |
return out | |
def forward( | |
self, | |
x, | |
context=None, | |
mask=None, | |
context_mask=None, | |
rotary_pos_emb=None, | |
causal=None | |
): | |
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None | |
kv_input = context if has_context else x | |
if hasattr(self, 'to_q'): | |
# Use separate linear projections for q and k/v | |
q = self.to_q(x) | |
q = rearrange(q, 'b n (h d) -> b h n d', h=h) | |
k, v = self.to_kv(kv_input).chunk(2, dim=-1) | |
k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=kv_h), (k, v)) | |
else: | |
# Use fused linear projection | |
q, k, v = self.to_qkv(x).chunk(3, dim=-1) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) | |
# Normalize q and k for cosine sim attention | |
if self.qk_norm == "l2": | |
q = F.normalize(q, dim=-1) | |
k = F.normalize(k, dim=-1) | |
elif self.qk_norm == "ln": | |
q = self.q_norm(q) | |
k = self.k_norm(k) | |
if rotary_pos_emb is not None and not has_context: | |
freqs, _ = rotary_pos_emb | |
q_dtype = q.dtype | |
k_dtype = k.dtype | |
q = q.to(torch.float32) | |
k = k.to(torch.float32) | |
freqs = freqs.to(torch.float32) | |
q = apply_rotary_pos_emb(q, freqs) | |
k = apply_rotary_pos_emb(k, freqs) | |
q = q.to(q_dtype) | |
k = k.to(k_dtype) | |
input_mask = context_mask | |
if input_mask is None and not has_context: | |
input_mask = mask | |
# determine masking | |
masks = [] | |
final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account | |
if input_mask is not None: | |
input_mask = rearrange(input_mask, 'b j -> b 1 1 j') | |
masks.append(~input_mask) | |
# Other masks will be added here later | |
if len(masks) > 0: | |
final_attn_mask = ~or_reduce(masks) | |
n, device = q.shape[-2], q.device | |
causal = self.causal if causal is None else causal | |
if n == 1 and causal: | |
causal = False | |
if self.natten_kernel_size is not None: | |
if natten is None: | |
raise ImportError('natten not installed, please install natten to use neighborhood attention') | |
dtype_in = q.dtype | |
q, k, v = map(lambda t: t.to(torch.float32), (q, k, v)) | |
attn = natten.functional.natten1dqk(q, k, kernel_size=self.natten_kernel_size, dilation=1) | |
if final_attn_mask is not None: | |
attn = attn.masked_fill(final_attn_mask, -torch.finfo(attn.dtype).max) | |
attn = F.softmax(attn, dim=-1, dtype=torch.float32) | |
out = natten.functional.natten1dav(attn, v, kernel_size=self.natten_kernel_size, dilation=1).to(dtype_in) | |
# Prioritize Flash Attention 2 | |
elif self.use_fa_flash: | |
assert final_attn_mask is None, 'masking not yet supported for Flash Attention 2' | |
# Flash Attention 2 requires FP16 inputs | |
fa_dtype_in = q.dtype | |
q, k, v = map(lambda t: rearrange(t, 'b h n d -> b n h d').to(torch.float16), (q, k, v)) | |
out = flash_attn_func(q, k, v, causal=causal) | |
out = rearrange(out.to(fa_dtype_in), 'b n h d -> b h n d') | |
# Fall back to PyTorch implementation | |
elif self.use_pt_flash: | |
# causal=False | |
# final_attn_mask:[64, 1, 1, 348] | |
out = self.flash_attn(q, k, v, causal=True, mask=final_attn_mask) | |
else: | |
# Fall back to custom implementation | |
if h != kv_h: | |
# Repeat interleave kv_heads to match q_heads | |
heads_per_kv_head = h // kv_h | |
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim=1), (k, v)) | |
scale = 1. / (q.shape[-1] ** 0.5) | |
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d' | |
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale | |
i, j, dtype = *dots.shape[-2:], dots.dtype | |
mask_value = -torch.finfo(dots.dtype).max | |
if final_attn_mask is not None: | |
dots = dots.masked_fill(~final_attn_mask, mask_value) | |
if causal: | |
causal_mask = create_causal_mask(i, j, device=device) | |
dots = dots.masked_fill(causal_mask, mask_value) | |
attn = F.softmax(dots, dim=-1, dtype=torch.float32) | |
attn = attn.type(dtype) | |
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v) | |
# merge heads | |
out = rearrange(out, ' b h n d -> b n (h d)') | |
# Communicate between heads | |
# with autocast(enabled = False): | |
# out_dtype = out.dtype | |
# out = out.to(torch.float32) | |
# out = self.to_out(out).to(out_dtype) | |
out = self.to_out(out) | |
if mask is not None: | |
mask = rearrange(mask, 'b n -> b n 1') | |
out = out.masked_fill(~mask, 0.) | |
return out | |
class ConformerModule(nn.Module): | |
def __init__( | |
self, | |
dim, | |
norm_kwargs={}, | |
): | |
super().__init__() | |
self.dim = dim | |
self.in_norm = LayerNorm(dim, **norm_kwargs) | |
self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False) | |
self.glu = GLU(dim, dim, nn.SiLU()) | |
self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False) | |
self.mid_norm = LayerNorm(dim, | |
**norm_kwargs) # This is a batch norm in the original but I don't like batch norm | |
self.swish = nn.SiLU() | |
self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False) | |
def forward(self, x): | |
x = self.in_norm(x) | |
x = rearrange(x, 'b n d -> b d n') | |
x = self.pointwise_conv(x) | |
x = rearrange(x, 'b d n -> b n d') | |
x = self.glu(x) | |
x = rearrange(x, 'b n d -> b d n') | |
x = self.depthwise_conv(x) | |
x = rearrange(x, 'b d n -> b n d') | |
x = self.mid_norm(x) | |
x = self.swish(x) | |
x = rearrange(x, 'b n d -> b d n') | |
x = self.pointwise_conv_2(x) | |
x = rearrange(x, 'b d n -> b n d') | |
return x | |
class TransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
dim_heads=64, | |
cross_attend=False, | |
dim_context=None, | |
global_cond_dim=None, | |
causal=False, | |
zero_init_branch_outputs=True, | |
conformer=False, | |
layer_ix=-1, | |
remove_norms=False, | |
attn_kwargs={}, | |
ff_kwargs={}, | |
norm_kwargs={} | |
): | |
super().__init__() | |
self.dim = dim | |
self.dim_heads = dim_heads | |
self.cross_attend = cross_attend | |
self.dim_context = dim_context | |
self.causal = causal | |
self.pre_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity() | |
self.self_attn = Attention( | |
dim, | |
dim_heads=dim_heads, | |
causal=causal, | |
zero_init_output=zero_init_branch_outputs, | |
**attn_kwargs | |
) | |
### 2. 主要是这边需要修改 | |
if cross_attend: | |
self.cross_attend_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity() | |
self.cross_attn = Attention( | |
dim, | |
dim_heads=dim_heads, | |
dim_context=dim_context, | |
causal=causal, | |
zero_init_output=zero_init_branch_outputs, | |
**attn_kwargs | |
) | |
self.ff_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity() | |
self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, **ff_kwargs) | |
self.layer_ix = layer_ix | |
self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None | |
self.global_cond_dim = global_cond_dim | |
if global_cond_dim is not None: | |
self.to_scale_shift_gate = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(global_cond_dim, dim * 6, bias=False) | |
) | |
nn.init.zeros_(self.to_scale_shift_gate[1].weight) | |
# nn.init.zeros_(self.to_scale_shift_gate_self[1].bias) | |
def forward( | |
self, | |
x, | |
context=None, | |
global_cond=None, | |
mask=None, | |
context_mask=None, | |
rotary_pos_emb=None | |
): | |
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None: | |
scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate( | |
global_cond).unsqueeze(1).chunk(6, dim=-1) | |
# self-attention with adaLN | |
residual = x | |
x = self.pre_norm(x) | |
x = x * (1 + scale_self) + shift_self | |
x = self.self_attn(x, mask=mask, rotary_pos_emb=rotary_pos_emb) | |
x = x * torch.sigmoid(1 - gate_self) | |
x = x + residual | |
if context is not None: | |
x = x + self.cross_attn(self.cross_attend_norm(x), context=context, context_mask=context_mask) | |
if self.conformer is not None: | |
x = x + self.conformer(x) | |
# feedforward with adaLN | |
residual = x | |
x = self.ff_norm(x) | |
x = x * (1 + scale_ff) + shift_ff | |
x = self.ff(x) | |
x = x * torch.sigmoid(1 - gate_ff) | |
x = x + residual | |
else: | |
x = x + self.self_attn(self.pre_norm(x), mask=mask, rotary_pos_emb=rotary_pos_emb) | |
if context is not None: | |
x = x + self.cross_attn(self.cross_attend_norm(x), context=context, context_mask=context_mask) | |
if self.conformer is not None: | |
x = x + self.conformer(x) | |
x = x + self.ff(self.ff_norm(x)) | |
return x | |
class ContinuousTransformer(nn.Module): | |
def __init__( | |
self, | |
dim, | |
depth, | |
*, | |
dim_in=None, | |
dim_out=None, | |
dim_heads=64, | |
cross_attend=False, | |
cond_token_dim=None, | |
global_cond_dim=None, | |
causal=False, | |
rotary_pos_emb=True, | |
zero_init_branch_outputs=True, | |
conformer=False, | |
use_sinusoidal_emb=False, | |
use_abs_pos_emb=False, | |
abs_pos_emb_max_length=10000, | |
**kwargs | |
): | |
super().__init__() | |
self.dim = dim | |
self.depth = depth | |
self.causal = causal | |
self.layers = nn.ModuleList([]) | |
self.project_in = nn.Linear(dim_in, dim, bias=False) if dim_in is not None else nn.Identity() | |
self.project_out = nn.Linear(dim, dim_out, bias=False) if dim_out is not None else nn.Identity() | |
if rotary_pos_emb: | |
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32)) | |
else: | |
self.rotary_pos_emb = None | |
self.use_sinusoidal_emb = use_sinusoidal_emb | |
if use_sinusoidal_emb: | |
self.pos_emb = ScaledSinusoidalEmbedding(dim) | |
self.use_abs_pos_emb = use_abs_pos_emb | |
if use_abs_pos_emb: | |
self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length) | |
for i in range(depth): | |
self.layers.append( | |
TransformerBlock( | |
dim, | |
dim_heads=dim_heads, | |
cross_attend=cross_attend, | |
dim_context=cond_token_dim, | |
global_cond_dim=global_cond_dim, | |
causal=causal, | |
zero_init_branch_outputs=zero_init_branch_outputs, | |
conformer=conformer, | |
layer_ix=i, | |
**kwargs | |
) | |
) | |
def forward( | |
self, | |
x, | |
mask=None, | |
prepend_embeds=None, | |
prepend_mask=None, | |
global_cond=None, | |
return_info=False, | |
**kwargs | |
): | |
batch, seq, device = *x.shape[:2], x.device | |
info = { | |
"hidden_states": [], | |
} | |
x = self.project_in(x) | |
if prepend_embeds is not None: | |
prepend_length, prepend_dim = prepend_embeds.shape[1:] | |
assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension' | |
x = torch.cat((prepend_embeds, x), dim=-2) | |
if prepend_mask is not None or mask is not None: | |
mask = mask if mask is not None else torch.ones((batch, seq), device=device, dtype=torch.bool) | |
prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), | |
device=device, dtype=torch.bool) | |
mask = torch.cat((prepend_mask, mask), dim=-1) | |
# Attention layers | |
if self.rotary_pos_emb is not None: | |
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1]) | |
else: | |
rotary_pos_emb = None | |
if self.use_sinusoidal_emb or self.use_abs_pos_emb: | |
x = x + self.pos_emb(x) | |
# Iterate over the transformer layers | |
mask = self.refine_mask(mask) | |
for layer in self.layers: | |
# x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs) | |
# pdb.set_trace() | |
x = checkpoint(layer, x, mask=mask.bool(), rotary_pos_emb=rotary_pos_emb, global_cond=global_cond, **kwargs) | |
if return_info: | |
info["hidden_states"].append(x) | |
x = self.project_out(x) | |
if return_info: | |
return x, info | |
return x | |
def refine_mask(self, mask): | |
return mask | |
# pdb.set_trace() | |
# mask = 1 - torch.triu(torch.ones(seq_length, seq_length), diagonal=1) | |
# return mask | |